• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Vaccine vs many common cold viruses achievable

Bioengineer by Bioengineer
September 27, 2016
in Health
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists are making the case that a vaccine against rhinoviruses, the predominant cause of the common cold, is achievable.

vaccine

The quest for a vaccine against rhinoviruses may have seemed quixotic, because there are more than 100 varieties circulating around the world. Even so, the immune system can handle the challenge, researchers from Emory University School of Medicine and Children’s Healthcare of Atlanta say.

Vaccines that combine dozens of varieties of rhinovirus at once are effective in stimulating antiviral antibodies in mice and monkeys, the researchers report in Nature Communications.

“We think that creating a vaccine for the common cold can be reduced to technical challenges related to manufacturing,” says Martin Moore, PhD, associate professor of pediatrics at Emory University School of Medicine.

Rhinoviruses are the most common cause of the common cold; other viruses such as respiratory syncytial virus, parainfluenza virus and adenoviruses can cause them too. Rhinoviruses also exacerbate asthma attacks. Although they come in many varieties, rhinoviruses do not drift to the same degree that influenza viruses do, Moore says.

Researchers showed in the 1960s that it was possible to vaccinate people against one variety of rhinovirus and prevent them from getting sick when challenged with samples of the same virus. The trouble was the sheer diversity of rhinoviruses — or that’s how it appeared at the time.

“It’s surprising that nobody tried such a simple solution over the last 50 years. We just took 50 types of rhinovirus and mixed them together into our vaccine, and made sure we had enough of each one,” Moore says. “If we make a vaccine with 50 or 100 variants, it’s the same amount of total protein in a single dose of vaccine. The variants are like a bunch of slightly different Christmas ornaments, not really like 50 totally different vaccines mixed.”

A mixture of 25 types of inactivated rhinovirus can stimulate neutralizing antibodies against all 25 in mice, and a mixture of 50 types can do the same thing in rhesus macaques. In this paper, antibodies generated in response to the vaccine were tested for their ability to prevent the virus from infecting human cells in culture. However, the vaccines were not tested for their ability to stop animals from getting sick.

“There are no good animal models of rhinovirus replication,” Moore says. “The next step would be human challenge models with volunteers, which are feasible because the virus is not very pathogenic.”

Emory has optioned the vaccine technology to a startup company, Meissa Vaccines, Inc., which is pursuing a product development plan with support from the National Institute of Allergy and Infectious Diseases’ vaccine manufacturing services.

Web Source: Emory University.

Reference:

Sujin Lee, Minh Trang Nguyen, Michael G. Currier, Joe B. Jenkins, Elizabeth A. Strobert, Adriana E. Kajon, Ranjna Madan-Lala, Yury A. Bochkov, James E. Gern, Krishnendu Roy, Xiaoyan Lu, Dean D. Erdman, Paul Spearman, Martin L. Moore. A polyvalent inactivated rhinovirus vaccine is broadly immunogenic in rhesus macaques. Nature Communications, 2016; 7: 12838 DOI: 10.1038/ncomms12838

The post Vaccine vs many common cold viruses achievable appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Evolving Deaminase Hotspots for Precise Cytosine Editing

July 7, 2025
Linking Body, Behavior to Atherogenic Risk Ratio

Linking Body, Behavior to Atherogenic Risk Ratio

July 5, 2025

FGF13 Shields Neurons to Halt Age-Related Hearing Loss

July 5, 2025

Glucose Metabolism Controls CD4+ T Cell Fate

July 5, 2025
Please login to join discussion

POPULAR NEWS

  • Zheng-Rong Lu

    Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    74 shares
    Share 30 Tweet 19
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    72 shares
    Share 29 Tweet 18
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    69 shares
    Share 28 Tweet 17
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evolving Deaminase Hotspots for Precise Cytosine Editing

HIV-1 Nuclear Entry Hinges on Capsid and Pore

Soil Dryness: Timing and Impact on Photosynthesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.