• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 15, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UTSA Artificial Intelligence Consortium receives over $1M in research funding

Bioengineer by Bioengineer
January 7, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University led research attempts to close the performance gap between modern artificial intelligence (AI) systems and biological systems

IMAGE

Credit: UTSA

Dhireesha Kudithipudi, founding director of the MATRIX AI Consortium for Human Well-Being, and the Robert F McDermott Endowed Chair in Engineering, was recently awarded $1,481,697 in combined funding for her research in lifelong learning. This funding includes a $472,306 sub-award from Argonne National Laboratory under the Defense Advanced Research Projects Agency’s (DARPA) Lifelong Learning Machines (L2M) program, along with a $1,009,391 award from the Air Force Research Laboratory (AFRL).

These awards will fund Kudithipudi’s ongoing research developing novel brain-inspired lifelong learning algorithms and systems. Her approaches attempt to close the performance gap between modern artificial intelligence (AI) systems and biological systems, allowing them to learn new tasks while simultaneously improving their energy efficiency.

“Machine learning (ML), which is a subset of artificial intelligence (AI), allows computers to leverage large sets of data to learn how to perform specific tasks, such as recognizing objects in an image or translating languages.

“While current ML algorithms have achieved remarkable results, these systems are still not as intelligent as living organisms. One key limitation is their inability to adapt to new scenarios which weren’t encountered during their original training procedure. We’re attempting to close this gap by incorporating unique aspects of biological intelligence within our AI models, such as the ability to add additional processing capacity over time (“neurogenesis”), along with mimicking the evolutionary process within our design procedure (“neuroevolution”),” explained Kudithipudi.

In regards to the L2M project, Kudithipudi and her Ph.D. students Nicholas Soures, Tej Pandit, and Anurag Daram are collaborating with researchers from Argonne and Sandia National Labs to develop energy-efficient lifelong learning algorithms which are inspired by the honeybee brain.

Although insect brains are a million times smaller, they are still capable of producing approximately half of the distinct cognitive behaviors of mammals. Replicating this efficiency is key to implementing AI algorithms on energy-constrained devices, such as mobile phones, IoT, or wearable devices.

Meanwhile, Kudithipudi’s AFRL project is focused on developing a neuromorphic chip with life-long learning capabilities on the end device. The chip will be fabricated at the SUNY Polytechnic Institute.

“The field of neuromorphic computing, which uses inspiration from the brain to design computing systems, has been instrumental in boosting AI capabilities. There is a recent surge of activity in this area as new device technologies for neurons and synapses offer significant promise,” said Kudithipudi. “Our design will be a hybrid technology of CMOS and memristor devices, with on-device training capability. The physics of the CMOS/Memristordevice will be exploited to realize brain-inspired mechanisms, such as metaplasticity, that are critical for lifelong learning capabilities. A unique co-design flow will offer real-time learning capabilities to this system. By implementing life-long learning algorithms which mimic human cognition, the applications of AI will expand dramatically. For DoD applications, this technology will greatly enhance AI-enabled support systems which can adapt quickly in unpredictable situations.”

The MATRIX AI Consortium for Human Well-Being is focused on achieving excellence in AI research and scholarship through transdisciplinary collaboration. This current effort, which leverages innovations from neuroscience to develop novel AI systems, is an excellent example of the types of projects which the Consortium is targeting.

“To develop disruptive AI solutions, researchers must transcend traditional disciplinary boundaries. By bringing together over 60 researchers with diverse expertise from four leading institutions in the greater San Antonio area (UTSA, UT Health, Southwest Research Institute, Texas Biomedical Research Institute), MATRIX is committed to accelerating these innovative transdisciplinary collaborations,” said Bernard Arulanandam, vice president for Research, Economic Development, and Knowledge Enterprise at UTSA.

###

Media Contact
Bruce Forey
[email protected]

Tags: Algorithms/ModelsBehaviorNanotechnology/MicromachinesResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021
IMAGE

Nanodiamonds feel the heat

January 15, 2021

Controlling chemical catalysts with sculpted light

January 15, 2021

Researchers trace geologic origins of Gulf of Mexico ‘super basin’ success

January 15, 2021
Next Post
IMAGE

Protein that can be toxic in the heart and nerves may help prevent Alzheimer's

IMAGE

Researchers question fundamental study on the Kondo effect

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Ecology/EnvironmentInfectious/Emerging DiseasesPublic HealthMedicine/HealthCell BiologycancerClimate ChangeGeneticsMaterialsChemistry/Physics/Materials SciencesTechnology/Engineering/Computer ScienceBiology

Recent Posts

  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Nanodiamonds feel the heat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In