• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Using optics to trace the flow of microplastics in oceans

Bioengineer by Bioengineer
March 21, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Microplastics are tiny plastic particles less than 5 mm in diameter that have emerged as a novel marine environment pollutant. Microplastics usually result from a breakdown of larger plastic debris but can also be generated from plastic microbeads used in personal care products. Over the years, there has been a significant buildup of microplastic pollutants in our oceans, with a recent estimate that the world’s oceans contain over 24.4 trillion pieces of microplastics weighing between 82,000 and 578,000 tons. It is highly likely that microplastics are being consumed by marine organisms and have pervaded the aquatic food chain.

Microscopic photo of PA12, a marine microplastic pollutant.

Credit: The Authors, doi: 10.1117/1.OE.62.3.034102.

Microplastics are tiny plastic particles less than 5 mm in diameter that have emerged as a novel marine environment pollutant. Microplastics usually result from a breakdown of larger plastic debris but can also be generated from plastic microbeads used in personal care products. Over the years, there has been a significant buildup of microplastic pollutants in our oceans, with a recent estimate that the world’s oceans contain over 24.4 trillion pieces of microplastics weighing between 82,000 and 578,000 tons. It is highly likely that microplastics are being consumed by marine organisms and have pervaded the aquatic food chain.

Additionally, microplastics have negatively affected the marine ecosystem by hindering light transmission through the ocean waters. This has disrupted the functioning of photosynthetic organisms, such as phytoplankton and algae, which can lead to a cascading effect on the entire food chain. It is, therefore, imperative to assess the radiative properties (absorption and scattering) of microplastics to determine the extent of disruption they cause to light propagation.

Fortunately, in a new study published in Optical Engineering, researchers from China and Singapore rose to the occasion. In their study, they determined the absorption coefficient and reflectivity of polyamide-12 (PA12), a common marine microplastic pollutant that is generated in the clothing, cosmetic, and packing industries. The researchers specifically focused on measuring two important parameters: the absorption coefficient, which indicates the amount of light absorbed, and the extinction coefficient, which accounts for the light attenuated (absorbed and scattered) by the particles.

Accordingly, they constructed an optical experimental setup containing a light source, optical fibers, an adjustable cuvette holder to hold the microplastic solution being inspected, and a spectrometer to assess the amount of light transmitted through the sample. For the microplastic solution, they prepared a suspension containing PA12 particles with a mean diameter of about 97.8 µm. To assess the degree of light scattering, they measured the amount of light transmitted through a glass cuvette containing deionized water without any contaminant to set a benchmark. They then repeated the experiment with microplastic powder suspension in a quartz glass cuvette. From these measurements, they estimated the extinction coefficient of PA12.

The absorption parameters were measured similarly. The researchers used an integrating sphere to collect the light scattered by the microplastic suspension in different directions and directed it toward a spectrometer for analysis.

The analysis revealed a scattering albedo (ratio of scattering efficiency to total extinction efficiency) of 0.7 for the PA12 suspension, implying that most of the light passing through it was scattered. “The scattering-dominated characteristic of PA12 changes the distribution of light in seawater, which, in turn, affects the marine ecology,” said Dr. Chunyang Ma, the corresponding author of the study.

Additionally, the PA12 particles were found to absorb the incident radiation at certain specific wavelengths. “Absorption peaks of PA12 were observed at wavelengths of 692, 728, 764, 800, 835, and 940 nm. These correspond to the vibrational absorption of methylene and amide groups,” Ma said.

With these insights, the researchers suggest that the radiative properties of PA12 can be used to optically monitor the flow of microplastics into oceans. This, in turn, could help us prevent their entry into the aquatic as well as terrestrial food chain, mitigating its threat to all forms of life, including humans.

Read the paper by Wen et al., “Thermal radiative properties of polyamide-12 from 0.2 to 1.1 μm” Opt. Eng. 62(3) 034102 (2023). doi: 10.1117/1.OE.62.3.034102.



Journal

Optical Engineering

DOI

10.1117/1.OE.62.3.034102

Article Title

Thermal radiative properties of polyamide-12 from 0.2 to 1.1 μm

Article Publication Date

6-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

ASU Scientists Discover New Fossils and Identify a New Ancient Human Ancestor Species

ASU Scientists Discover New Fossils and Identify a New Ancient Human Ancestor Species

August 14, 2025
New Fossil Finds Unveil a Previously Unknown Ancient Human Species, Shedding Light on Evolution

New Fossil Finds Unveil a Previously Unknown Ancient Human Species, Shedding Light on Evolution

August 14, 2025

Embryonic Stem Cell Spheroids Enable Scaffold-Free Cartilage Engineering

August 13, 2025

New Discovery Reveals Early Hominin Species Coexisted in Ethiopia

August 13, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasound AI Unveils Groundbreaking Study on Using AI and Ultrasound Images to Predict Delivery Timing

County-Level Variations in Cervical Cancer Screening Coverage and Their Impact on Incidence and Mortality Rates

Mount Sinai Study Adds Evidence Linking Prenatal Acetaminophen Exposure to Increased Autism and ADHD Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.