• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Using mountains for long-term energy storage

Bioengineer by Bioengineer
November 11, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: IIASA


Batteries are rapidly becoming less expensive and might soon offer a cheap short-term solution to store energy for daily energy needs. However, the long-term storage capabilities of batteries, for example, in a yearly cycle, will not be economically viable. Although pumped-hydro storage (PHS) technologies are an economically feasible choice for long-term energy storage with large capacities – higher than 50 megawatts (MW) – it becomes expensive for locations where the demand for energy storage is often smaller than 20 MW with monthly or seasonal requirements, such as small islands and remote locations.

In a study published in the journal Energy, IIASA researcher Julian Hunt and his colleagues propose MGES to close the gap between existing short- and long-term storage technologies. MGES constitutes of building cranes on the edge of a steep mountain with enough reach to transport sand (or gravel) from a storage site located at the bottom to a storage site at the top. A motor/generator moves storage vessels filled with sand from the bottom to the top, similar to a ski lift. During this process, potential energy is stored. Electricity is generated by lowering sand from the upper storage site back to the bottom. If there are river streams on the mountain, the MGES system can be combined with hydropower, where the water would be used to fill the storage vessels in periods of high availability instead of the sand or gravel, thus generating energy. MGES systems have the benefit that the water could be added at any height of the system, thereby increasing the possibility of catching water from different heights in the mountain, which is not possible in conventional hydropower.

“One of the benefits of this system is that sand is cheap and, unlike water, it does not evaporate – so you never lose potential energy and it can be reused innumerable times. This makes it particularly interesting for dry regions,” notes Hunt. “Additionally, PHS plants are limited to a height difference of 1,200 meters, due to very high hydraulic pressures. MGES plants could have height differences of more than 5,000 meters. Regions with high mountains, for example, the Himalayas, Alps, and Rocky Mountains, could therefore become important long-term energy storage hubs. Other interesting locations for MGES are islands, such as Hawaii, Cape Verde, Madeira, and the Pacific Islands with steep mountainous terrain.”

In the paper, the authors propose a future energy matrix for the Molokai Island in Hawaii, using only wind, solar, batteries, and MGES to supply the island’s energy demand. Hunt emphasizes that the MGES technology should not be used for peak generation or storing energy in daily cycles – instead it fills a gap in the market for locations with long-term storage. MGES systems can, for instance, store energy continuously for months and then generate power continuously for months or when there is water available for hydropower, while batteries deal with the daily storage cycles.

“It is important to note that the MGES technology does not replace any current energy storage options but rather opens up new ways of storing energy and harnessing untapped hydropower potential in regions with high mountains,” Hunt concludes.

###

Reference

Hunt J, Zakeri B, Falchetta G, Nascimento A, Wada Y, & Riahi K (2019). Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies. Energy DOI: https://doi.org/10.1016/j.energy.2019.116419

Contacts:


Researcher contact

Julian Hunt

Research Scholar

Water

Energy

+43(0) 2236 807 675

[email protected]

Communications Officer

Bettina Greenwell

IIASA Press Office

Tel: +43 2236 807 282

[email protected]

About IIASA:

The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, and Europe. http://www.iiasa.ac.at

Media Contact
Julian Hunt
[email protected]
43-022-368-07675

Original Source

https://www.iiasa.ac.at/web/home/about/news/191111-MGES.html

Related Journal Article

http://dx.doi.org/10.1016/j.energy.2019.116419

Tags: Ecology/EnvironmentEnergy SourcesEnergy/Fuel (non-petroleum)Technology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Computational Power to Predict Optimal Ligands for Generating Reactive Alkyl Ketone Radicals in Organic Synthesis

Harnessing Computational Power to Predict Optimal Ligands for Generating Reactive Alkyl Ketone Radicals in Organic Synthesis

October 30, 2025
blank

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025

Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

October 29, 2025

Enhancing Hygiene and Usability of Menstrual Cups: A Scientific Breakthrough

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hexaploid Oat: Pangenome and Pantranscriptome Unveiled

Impact of Fluorine Content on Dianionic Ionic Liquids

Plant Flavonoids Disrupt Pseudomonas Aeruginosa Biofilms

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.