• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

USDA funds study of dairy cattle’s environmental footprint

Bioengineer by Bioengineer
July 23, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jason Koski, Cornell University

ITHACA, N.Y. – Dairy farmers have improved the efficiency and reduced the environmental impacts of their farms over the recent decades, but consumers, policymakers and others are still concerned about cattle’s effects on water and the climate.

A new open-source computer model being developed by a Cornell University-led interdisciplinary team will simulate production and quantify the environmental effects of management decisions made on dairy farms.

The Ruminant Farms Systems Model project is funded by a four-year, $1 million grant from the U.S. Department of Agriculture’s National Institute of Food and Agriculture.

“A next-generation, whole-farm, dairy sustainability simulation model allows us to understand interactions in these complex systems and how the outcomes from one part of the system influences other parts of the system,” said Kristan Reed, assistant professor of animal science, and principal investigator of the project.

“For example, if you are increasing milk production on a given fixed landscape, you’re likely going to increase manure production,” she said, “and so what are the outcomes on the landscape that would go along with that increased milk production?”

Scientists and dairy farmers will need such tools to make economic and environmentally balanced management decisions, while industry personnel and policymakers can use them to inform policies for improving the sustainability of the dairy industry.

Dairy cows are among the biggest agricultural contributors to both climate change and water pollution. Methane, a potent greenhouse gas, is released directly from cows as they digest grass and grain. Additionally, decomposing manure creates methane, nitrous oxide and ammonia. While nitrous oxide is also a greenhouse gas, ammonia contaminates water and contributes to acid rain. Additionally, nutrients such as phosphorus and nitrogen in manure pollute groundwater, streams and lakes.

A team of animal scientists, agronomists, soil scientists, microbiologists, engineers and computer scientists at Cornell; the University of Wisconsin, Madison; the University of Arkansas; the University of California, Davis; and the USDA Agricultural Research Service, began working on the model three years ago. Since then, they have combined and interconnected animal, manure, crop and soil, and feed storage modules into their computer code.

They have been in dialogues with local farmers to get feedback on the types of information most relevant to those farmers’ decision-making processes and will run pilot simulations in commercial settings.

Some main objectives include addressing limitations of current farm management models by writing clean and clear computer codes and making the system flexible so it can incorporate new management practices. Daily weather data is also being added to the model in order to simulate future climate scenarios.

In the future, the team may expand the model to incorporate meat production and possibly create a simple non-technical interface for farmers and others.

###

Media Contact
Lindsey Hadlock
[email protected]

Original Source

https://news.cornell.edu/stories/2020/07/usda-funds-study-dairy-cattles-environmental-footprint

Tags: AgricultureClimate ChangeComputer ScienceEarth ScienceHydrology/Water ResourcesMicrobiologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Rewrite HKUMed identifies key protein in liver cancer resistance and develops inhibitor to enhance therapy and prevent cancer recurrence this news headline for the science magazine post

August 15, 2025
blank

Rewrite New co-assembly strategy unlocks robust circularly polarized luminescence across the color spectrum this news headline for the science magazine post

August 15, 2025

Enhancing Thermoelectric Efficiency with a Targeted Approach

August 15, 2025

Rewrite Tea leaves shape their microbial world: metabolites drive phyllosphere microbiome assembly this news headline for the science magazine post

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite HKUMed identifies key protein in liver cancer resistance and develops inhibitor to enhance therapy and prevent cancer recurrence this news headline for the science magazine post

Rewrite New co-assembly strategy unlocks robust circularly polarized luminescence across the color spectrum this news headline for the science magazine post

Enhancing Thermoelectric Efficiency with a Targeted Approach

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.