• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 1, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

USC scientists turn off the ability to feel cold

Bioengineer by Bioengineer
February 13, 2013
in NEWS
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

David McKemy, associate professor of neurobiology in the USC Dornsife College of Letters, Arts and Sciences, and his team managed to selectively shut off the ability to sense cold in mice while still leaving them able to sense heat and touch.

In prior work, McKemy discovered a link between the experience of cold and a protein known as TRPM8 (pronounced trip-em-ate), which a sensor of cold temperatures in neurons in the skin, as well as a receptor for menthol, the cooling component of mint. Now, in a paper appearing in the Journal of Neuroscience on February 13, McKemy and his co-investigators have isolated and ablated the neurons that express TRPM8, giving them the ability to test the function of these cells specifically.

Using mouse-tracking software program developed by one of McKemy’s students, the researchers tested control mice and mice without TRPM8 neurons on a multi-temperature surface. The surface temperature ranged from 0 degrees to 50 degrees Celsius (32 to 122 degrees Farenheit), and mice were allowed to move freely among the regions.

The researchers found that mice depleted of TRPM8 neurons could not feel cold, but still responded to heat. Control mice tended to stick to an area around 30 degrees Celsius (86 degrees Fahrenheit) and avoided both colder and hotter areas. But mice without TRPM8 neurons avoided only hotter plates and not cold — even when the cold should have been painful or was potentially dangerous.

In tests of grip strength, responses to touch, or coordinated movements, such as balancing onto a rod while it rotated, there was no difference between the control mice and the mice without TRPM8-expressing neurons.

By better understanding the specific ways in which we feel sensations, scientists hope to one day develop better pain treatments without knocking out all ability to feel for suffering patients.

“The problem with pain drugs now is that they typically just reduce inflammation, which is just one potential cause of pain, or they knock out all sensation, which often is not desirable,” McKemy said. “One of our goals is to pave the way for medications that address the pain directly, in a way that does not leave patients completely numb.”

###

Coauthors on the paper are Wendy Knowlton, Radhika Palkar, Erika Lippoldt, Daniel McCoy, Farhan Baluch and Jessica Chen, all of USC.

Funding for this research came from the National Institutes of Health (grants NS054069 and NS078530). 

Source:

The above story is reprinted from materials provided by University of Southern California, via EurekAlert!, a service of AAAS.

IMAGE: Guardian

Tags: Bioengineering
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Microplastic sizes in Hudson-Raritan Estuary and coastal ocean revealed

March 1, 2021
IMAGE

Cancer: a new killer lymphocyte enters the ring

March 1, 2021

Single cell sequencing opens new avenues for eradicating leukemia at its source

March 1, 2021

Boston College physicist Brian Zhou receives NSF CAREER Award

March 1, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    648 shares
    Share 259 Tweet 162
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsBiologyPublic HealthEcology/EnvironmentcancerCell BiologyGeneticsTechnology/Engineering/Computer ScienceMedicine/HealthInfectious/Emerging DiseasesClimate ChangeChemistry/Physics/Materials Sciences

Recent Posts

  • Microplastic sizes in Hudson-Raritan Estuary and coastal ocean revealed
  • Cancer: a new killer lymphocyte enters the ring
  • Single cell sequencing opens new avenues for eradicating leukemia at its source
  • Boston College physicist Brian Zhou receives NSF CAREER Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In