• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

USC research identifies existential threats to the iconic Nile River Delta

Bioengineer by Bioengineer
March 9, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Large-scale heavy metal pollution, coastal erosion and seawater intrusion pose an existential threat to the Nile River Delta and endanger 60 million people (about twice the population of Texas) in Egypt who depend on its resources for every facet of life, according to new research from the USC Viterbi School of Engineering. Furthermore, the Nile River Delta is a critical stopover for migrating birds across their journey along the East African flyway. 

Nile River Delta at Night

Credit: NASA

Large-scale heavy metal pollution, coastal erosion and seawater intrusion pose an existential threat to the Nile River Delta and endanger 60 million people (about twice the population of Texas) in Egypt who depend on its resources for every facet of life, according to new research from the USC Viterbi School of Engineering. Furthermore, the Nile River Delta is a critical stopover for migrating birds across their journey along the East African flyway. 

The study, led by Essam Heggy from the USC Viterbi Innovation Fund Arid Climates and Water Research Center, published on Tuesday, March 7, in the American Geophysical Union (AGU) journal Earth’s Future.  

The impact of the pollution is especially pronounced in Egypt, the most populous and arid nation downstream of the Nile, which depends entirely on the river as its only source of water for drinking and crop irrigation. The country currently faces one of the highest water budget deficits in Africa after decades of compensating for dwindling water supplies with intensive, large-scale wastewater reuse, the consequences of which have been understudied until now. 

“You have roughly the combined populations of California and Florida living in a space the size of the state of New Jersey that is increasingly polluted by toxic heavy metals,” said Heggy. “Today, the civilization that thrived in a scenic waterscape for over 7,000 years must face the reality of this irreversible large-scale environmental degradation.” 

For the study, researchers from the U.S. and Egypt analyzed grain size and pollution levels of eight heavy metals in samples of bottom sediment collected from two branches of the Nile River Delta. Key findings included: 

  • Sediment at the bottom of the Nile River is highly polluted by heavy metals like cadmium, nickel, chromium, copper, lead and zinc. 

  • Contaminants primarily come from untreated agricultural drainage and municipal and industrial wastewater. Without proper treatment of recycled water, concentrations of heavy metals increase and are permanently embedded in the riverbed unlike organic pollutants which naturally degrade over time. 

  • Heavy metal concentrations could be exacerbated by increased damming of the Nile. Mega-dams built upstream disrupt the river’s natural flow and sediment flux and thus adversely affect its ability to flush contaminants out into the Mediterranean Sea, leaving toxins to build up in bottom sediment over time. 

Much of the heavy metal contamination is irreversible, the researchers said, but science-based conservation measures suggested by the study can slow environmental degradation and hopefully recover the Nile River Delta ecosystem. 

“The aggravating water stress and the rapid population growth in Egypt, reaching above 100 million, have put local authorities in a dilemma whether to provide sufficient fresh water for the thirsty agricultural sector to secure the food supply through reusing untreated agricultural drainage water or to preserve the health of the Nile River,” said Abotalib Z. Abotalib, a postdoctoral researcher at USC Viterbi and co-author of the study. “The balance is challenging, and the consequences of both choices are measurable.” 

“Our study underscores the need for more research on the environmental impacts of untreated water recycling and the change in river turbidity under increased upstream damming of the Nile,” Heggy said. 

“Continued research with more sampling campaigns in this area could inform future conversations and collaborations among nations of the Nile River Basin, who have a shared interest toward maintaining a healthy Nile River system.” 



Journal

Earth s Future

DOI

10.1029/2022EF002987

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Irreversible and large-scale heavy metal pollution arising from increased damming and untreated water reuse in the Nile Delta

Article Publication Date

7-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Spur-thighed tortoise (Testudo graeca).

Turtles and crocodiles with unique characteristics are more likely to go extinct

March 28, 2023
Thrushes

A final present from birds killed in window collisions: poop that reveals their microbiomes

March 28, 2023

Fast and low-cost computational method can monitor spread of antibiotic resistance over time

March 27, 2023

Rare beetle, rediscovered after 55 years, named in honor of Jerry Brown

March 27, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New method for fast, efficient and scalable cloud tomography

Molecular mechanisms of disease pathophysiology: Journal of Pharmaceutical Analysis articles provide novel insights

Significant disparities in breast cancer care persist, but surgeons can drive change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In