• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Upconversion of infrared photons enables rapid organic synthesis under sunlight

Bioengineer by Bioengineer
February 6, 2023
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research group led by Prof. WU Kaifeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has reported the efficient near-infrared photon upconversion sensitized by lead-free semiconductor nanocrystals, and demonstrated its novel application in solar synthesis.

Upconversion of infrared photons enables rapid organic synthesis under sunlight

Credit: DICP

A research group led by Prof. WU Kaifeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has reported the efficient near-infrared photon upconversion sensitized by lead-free semiconductor nanocrystals, and demonstrated its novel application in solar synthesis.

The study was published in Nature Photonics on Feb. 6.

Upconversion of near-infrared photons to visible photons can boost the performance of photovoltaics, photoredox-catalysis and phototheranostics. Sensitized triplet-fusion is a promising means for photon upconversion.

However, current photosensitizers capable of near-infrared absorption often contain either precious or toxic elements, for example, palladium- or platinum-complexes and lead chalcogenide nanocrystals.

In this study, the researchers reported zinc-doped CuInSe2 nanocrystals as a low-cost and environmentally-benign sensitizer for near-infrared-to-visible upconversion, which achieved external quantum efficiency of 16.7% for this spectral range.

This upconversion system was further merged with photoredox catalysis, enabling reductive dehalogenation, amine oxidation, carbon-oxygen bond formation and photopolymerization efficiently driven by near-infrared photons. 

More importantly, thanks to the broadband light capturing of the near-infrared nanocrystals, these reactions were remarkably rapid under indoor sunlight, enabling, for example, polymerization of acrylates within just 30 seconds.

“Organic synthesis under sunlight, or solar synthesis, has been a century-long idea, which was pioneered by Ciamician et al. But organic chemists’ vision has been limited to utilizing visible photons in sunlight,” said Prof. WU. “Our study extends the reach of solar synthesis to both visible and near-infrared photons abundant in sunlight, which is poised to strongly boost this technology.”



Journal

Nature Photonics

DOI

10.1038/s41566-023-01156-6

Method of Research

Commentary/editorial

Subject of Research

Not applicable

Article Title

Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals

Article Publication Date

6-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Aging (Aging-US)

Aging | Parsing chronological and biological age effects on vaccine responses

March 27, 2023
O-ClickFC for high-throughput analysis of single-cell lipid metabolism at the organelle level

Novel Click chemistry technology for ultrafast analysis of intracellular lipids

March 27, 2023

Storing information with spins: Creating new structured spin states with spatially structured polarized light

March 27, 2023

In the tropics, woody vines make lightning more deadly for forests

March 27, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

JNM explores potential applications for ChatGPT in nuclear medicine and molecular imaging

Beneficial bacteria in the infant gut uses nitrogen from breast milk to support baby’s health

Rare beetle, rediscovered after 55 years, named in honor of Jerry Brown

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In