• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

uOttawa researchers find cheaper, faster way to measure the electric field of light

Bioengineer by Bioengineer
October 16, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Aleksey Korobenko

Researchers at uOttawa have created a new method to measure the temporal evolution of electric fields with optical frequencies. The new approach, which works in ambient air, facilitates the direct measurement of the field waveform and could lead to breakthroughs in high-speed electronics.

To learn more, we talked to Aleksey Korobenko, a postdoctoral fellow in the Department of Physics at the University of Ottawa, and lead author of “Femtosecond streaking in ambient air”, an article recently published in the journal Optica.

Please tell us about this research project.

“The aim of our project is to resolve the electric field oscillations in a light pulse. This allows one to control the motion of electrons in quantum systems on shortest time scales and may lead to important applications such as petahertz electronics — that are a million times faster than typical modern processors.

Such a measurement was first achieved using a technique called attosecond streaking — a generalization of the long-known conventional streak camera. When irradiated with a short electromagnetic pulse, the gas molecules give up their electrons that continue their motion, experiencing the pull from the field of a second, “streaking,” pulse. Measuring the velocity that the electrons acquire due to this pull allows one to reconstruct the streaking pulse on attosecond time scales.”

What did you discover?

“In our work we demonstrated that instead of measuring the velocities of individual electrons in low-density gas samples, which requires high vacuum conditions and/or a complicated setup, one can simply measure the current induced in air plasma under ambient conditions. We probe this current using a pair of metal electrodes. which facilitates a much simpler and faster measurement of a light wave oscillation.”

Why is it important?

“We can access the time scales of the optical field oscillations in an inexpensive, fast and robust way. Owing to its simplicity, our method can become a useful tool for the ultrashort lasers research community, aiding the development of a next generation petahertz electronics.”

How was this research conducted?

“The experiments were carried out using a unique, state-of-the-art, high-power laser generating ultrashort pulses from the visible to the infrared spectrum. Performing a measurement of these pulses under different experimental conditions, we benchmarked our method against the established measurement techniques.”

Is there anything you’d like to add?

“Yes, this study is an international collaboration with researchers from the Ludwig-Maximilian University of Munich, the Max-Planck Institute for Quantum Optics in Germany and the Joint Attosecond Science Lab (NRC and uOttawa). Researchers of Canadian, Russian, German, American, Iranian, Chinese and French nationality participated in the project.

The research was conducted in the Joint Attosecond Science Laboratory, which is jointly operated by the University of Ottawa and the National Research Council.”

###

Media Contact
Justine Boutet
[email protected]

Original Source

https://media.uottawa.ca/news/ultra-fast-speed-uottawa-researchers-find-cheaper-easier-and-faster-way-measure-electric-field

Related Journal Article

http://dx.doi.org/10.1364/OPTICA.398846

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

September 12, 2025

Terabase-Scale Long-Reads Reveal Soil Bioactive Molecules

September 12, 2025

Diverse, Lasting, and Adaptable Brain Growth Post-Preterm

September 12, 2025

Geographic Limits in Stimulus Curbed Seoul COVID-19

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

Terabase-Scale Long-Reads Reveal Soil Bioactive Molecules

Diverse, Lasting, and Adaptable Brain Growth Post-Preterm

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.