• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Unveiling the cause of onion center rot

Bioengineer by Bioengineer
March 9, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Alex Polidore

Since 1983, the bacteria Pantoea ananatis has been known to infect several important crops including onions, rice, and corn. It was unclear, however, what molecules were involved. A new study, published in mBio, has identified one of the culprits: pantaphos. Intriguingly, the researchers have discovered that pantaphos can also act as an herbicide and it is toxic to glioblastoma cells, making it an exciting candidate for agricultural and biomedical applications.

“Herbicide resistant weeds are an issue in agriculture,” said William Metcalf (MMG leader), a professor of microbiology. “Unfortunately, there hasn’t been a new class of herbicide for over 30 years. If we can understand how pantaphos causes onion rot, we can solve a big problem.”

Scientists at Cornell University had previously compared the disease-causing strains of P. ananatis to other innocuous strains. They identified a group of genes, designated as hvr, that were responsible for causing onion rot. The researchers in the current paper were inspired by these studies, and they subsequently identified which molecules were produced by these genes and found pantaphos.

“We can inject onions with purified pantaphos and cause onion rot. The injected onions start rotting, and become gross and mushy. It was exciting to see,” said Alexander Polidore, a PhD student in the Metcalf lab. “Additionally, bacteria that cannot synthesize this molecule cannot cause onion rot, which means that it is necessary to cause the infection.”

“If we can fully understand how pantaphos is made by the bacteria, we can identify multiple steps of intervention. If we can stop any one of those processes, we can get rid of onion rot,” Metcalf said.

Intriguingly, pantaphos has also shown promise as an effective herbicide. “I compared pentaphos to Liberty and Roundup, which are common herbicides, and it was just as good–or even better–against typical weeds such as mustard seedlings,” Polidore said.

An important requirement for an herbicide is that it kills weeds, but remains non-toxic to other animals, including humans. Therefore, the researchers tested the toxicity of pantaphos against other organisms. “Although it does not affect other bacteria and fungi, we found that it is moderately toxic to normal human cell lines, but strikingly toxic to glioblastoma cell lines. We were excited because those cancer cells are notoriously hard to kill,” Polidore said.

Although pantaphos is somewhat toxic to human cell lines, it is possible that it will not be toxic to whole animals. “If you feed pantaphos to a mouse and it doesn’t get taken up in the intestine, it will be much less toxic,” Metcalf said. “Thus, our cell line studies are preliminary and will require follow-up experiments to define the level of toxicity in humans.”

The researchers are currently trying to understand how pantaphos kills weeds and glioblastoma cells. The results of those studies may help them design modified versions of the molecule that affect only the desirable targets. Using bioinformatic analysis, they have also found similar hvr genes in other bacteria, indicating that there may be several pantaphos-like molecules that could be used as potential herbicides or therapeutic drugs.

###

The study “A Phosphonate Natural Product Made by Pantoea ananatis is Necessary and Sufficient for the Hallmark Lesions of Onion Center Rot” can be found at 10.1128/mBio.03402-20. The study was funded by the National Institutes of Health.

Media Contact
Ananya Sen
[email protected]

Original Source

https://www.igb.illinois.edu/article/unveiling-cause-onion-center-rot

Related Journal Article

http://dx.doi.org/10.1128/mBio.03402-20

Tags: BacteriologyBiochemistryBioinformaticsBiologyFertilizers/Pest ManagementFood/Food ScienceMicrobiologyMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Evidence Use in Australian Clinical Networks Explained

September 30, 2025
Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

September 30, 2025

Analyzing Asparaginase Pancreatitis in Pediatric Leukemia Rechallenge

September 30, 2025

Experts Caution Federal Budget Reductions Could Stall Progress in Tobacco Control Efforts

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evidence Use in Australian Clinical Networks Explained

Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

Analyzing Asparaginase Pancreatitis in Pediatric Leukemia Rechallenge

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.