• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 24, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unusual atom helps in search for Universe’s building blocks

Bioengineer by Bioengineer
February 24, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An unusual form of caesium atom is helping a University of Queensland-led research team unmask unknown particles that make up the Universe.

Caesium

Credit: The University of Queensland

An unusual form of caesium atom is helping a University of Queensland-led research team unmask unknown particles that make up the Universe.

Dr Jacinda Ginges, from UQ’s School of Mathematics and Physics, said the unusual atom – made up of an ordinary caesium atom and an elementary particle called a muon – may prove essential in better understanding the Universe’s fundamental building blocks.

“Our Universe is still such a mystery to us,” Dr Ginges said.

“Astrophysical and cosmological observations have shown that the matter we know about –commonly referred to as ‘Standard Model’ particles in physics – makes up only five percent of the matter and energy content of the Universe.

“Most matter is ‘dark’, and we currently know of no particle or interaction within the Standard Model that explains it.

“The search for dark matter particles lies at the forefront of particle physics research, and our work with caesium might prove essential in solving this mystery.”

The work may also one day improve technology.

“Atomic physics plays a major role in technologies we use every day, such as navigation with the Global Positioning System (GPS), and atomic theory will continue to be important in the advancement of new quantum technologies based on atoms,” Dr Ginges said.

Through theoretical research, Dr Ginges and her team have improved the understanding of the magnetic structure of caesium’s nucleus, its effects in atomic caesium and the effects of the weird and wonderful muon.

“A muon is basically a heavy electron – 200 times more massive – and it orbits the nucleus 200 times closer than the electrons,” Dr Ginges said.

“Because of this, it can pick up on details of the structure of the nucleus.

“It sounds complicated, but in a nutshell, this work will help to improve atomic theory calculations that are used in the search for new particles.”

The researchers said the new approach can offer greater sensitivity and an alternative technique to finding new particles, through the use of precision atomic measurements.

“You may have heard of the Large Hadron Collider at CERN, the world’s largest and most powerful particle accelerator, which smashes together subatomic matter at high energies to find previously unseen particles,” Dr Ginges said.

“But our research can offer greater sensitivity, with an alternative technique to find new particles – through precision atomic measurements.

“It doesn’t need a giant collider, and instead uses precision instruments to look for atomic changes at low energy.

“Rather than explosive, high-energy collisions, it’s the equivalent of creating an ultra-sensitive ‘microscope’ to witness the true nature of atoms.

“This can be a more sensitive technique, unveiling particles that particle colliders simply can’t see.”

Caesium is having a moment, after being featured in the news recently, as the element in the radioactive capsule that went missing, and was subsequently found, in Western Australia’s outback.

This research, led by Dr Ginges, was performed together with graduate student George Sanamyan and Dr Benjamin Roberts, and has been published in Physical Review Letters.



Journal

Physical Review Letters

DOI

10.1103/PhysRevLett.130.053001

Article Title

Empirical Determination of the Bohr-Weisskopf Effect in Cesium and Improved Tests of Precision Atomic Theory in Searches for New Physics

Article Publication Date

1-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Tiny structures known as MXenes

UChicago scientists discover easy way to make atomically-thin metal layers for new technology

March 23, 2023
Professor Christine Holt

Cambridge scientist Professor Christine Holt wins world’s top neuroscience award

March 23, 2023

Researchers make breakthrough in high-pressure magnetic detection

March 23, 2023

Global warming undermines greenhouse gas sink function of pristine wetlands

March 23, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

THE LANCET: Health experts call for bold action to prioritize health over profit

ORNL malware ‘vaccine’ generator licensed for Evasive.ai platform

Black, Latinx Californians face highest exposure to oil and gas wells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In