• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unstable rock pillars near reservoirs can produce dangerous water waves

Bioengineer by Bioengineer
March 3, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Experiments on a simple model for granular cliffs that line the banks of rivers highlight hidden risks

IMAGE

Credit: Huang Bolin


WASHINGTON, March 3, 2020 — In many coastal zones and gorges, unstable cliffs often fail when the foundation rock beneath them is crushed. Large water waves can be created, threatening human safety.

In this week’s Physics of Fluids, from AIP Publishing, scientists in China reveal the mechanism by which these cliffs collapse, and how large, tsunami-like waves, known as impulse waves, are created. Few experimental studies of this phenomenon have been carried out, so this work represents valuable new data that can be used to protect from impending disaster.

The experiments were carried out in a transparent, rectangular box. A large body of water was placed at one end of the box and a granular pile at the other. The pile is separated from the water by a movable gate. When the gate is brought upward quickly, the pile collapses and slides into the water, inducing wave action.

The shape of the granular particles was chosen to resemble the shapes of samples from the Three Gorges Reservoir area in China. Motion of the body of water was observed with additional floating and suspended particles. Movements of this second group of particles was detected by a camera outside the box at 100 frames per second.

The investigators varied the width and height of the granular pile and, separately, the height of the body of water. The pile height-to-width ratio was found to be critical, determining how the pile collapses as well as the types of impulse waves produced.

The pile collapsed in four stages, eventually pushing water away. The resulting water movements were transferred back to the pile under certain conditions, creating vortices. Three types of water waves were generated: transition waves, solitary waves and bores.

Transition waves decay gradually as they propagate. Solitary waves, though, consist of a single water crest that moves rapidly, without decreasing its amplitude. In a bore, the top of the wave breaks and spills forward.

By fitting the observed experimental data to a formula, the investigators developed a way to predict which type of wave would be produced.

“These formulas are highly suitable for the collapse of partially submerged granular piles,” said co-author Huang Bolin.

###

The article, “Experimental study on impulse waves generated by gravitational collapse of rectangular granular piles,” is authored by Huang Bolin, Zhang Quan, Wang Jian, Luo Chaolin, Chen Xiaoting and Chen Lichuan. The article will appear in Physics of Fluids on March 3, 2020 (DOI: 10.1063/1.5138709). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5138709.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See https://aip.scitation.org/journal/phf.

Media Contact
Larry Frum
[email protected]
301-209-3090

Related Journal Article

http://dx.doi.org/10.1063/1.5138709

Tags: Chemistry/Physics/Materials SciencesEarth ScienceGeology/SoilGeophysicsHydrology/Water Resources
Share12Tweet8Share2ShareShareShare2

Related Posts

Electrifying Industrial Hydrogen Peroxide via Soft Interfaces

Electrifying Industrial Hydrogen Peroxide via Soft Interfaces

September 23, 2025
blank

Metalloligand-Driven Cobalt Catalyst Achieves Anti-Markovnikov Hydrosilylation of Alkynes Using Tertiary Silanes

September 22, 2025

SwRI Leads IMAP Payload Development for Upcoming Mission to Map Heliosphere Boundary

September 22, 2025

Radical C–C Coupling Boosts CO₂ Electroreduction

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Beyond Reflexes: How the Spine Influences Sexual Behavior

Turn Seaweed By-Products into CO2 Adsorption Binders

Non-Coding RNA: New Horizons in Osteosarcoma Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.