• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, June 6, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unravel the mystery of the quasar’s “anisotropic” effects on surrounding gas

Bioengineer by Bioengineer
July 22, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The team* led by Prof. Toru Misawa of the School of General Education, Shinshu University found for the first time that the internal donut-shaped structure of the central nuclei of bright galaxies in the distant universe can have an “anisotropic” effect on the gas distributed over a vast area around them.

Figure 1

Credit: SHINSHU UNIVERSITY

The team* led by Prof. Toru Misawa of the School of General Education, Shinshu University found for the first time that the internal donut-shaped structure of the central nuclei of bright galaxies in the distant universe can have an “anisotropic” effect on the gas distributed over a vast area around them.

 

Because luminous nuclei of distant galaxies (quasars) emit strong ultraviolet radiation, they ionize** hydrogen gas (intergalactic gas***) around them. If the quasar’s UV radiation is isotropic, the “ionization level” of intergalactic gas should be almost constant regardless of the direction seen from the quasars. However, previous studies have reported that the ionization level is biased depending on the direction.

 

Therefore, the team investigated the origin of the anisotropic ionization level by targeting unique objects called “BAL quasars” whose direction of ultraviolet radiation can be estimated to some extent. Specifically, the team measured the ionization level of intergalactic gas in the transverse direction of a foreground BAL quasar, by observing another quasar in the background (Fig. 1). As a result of new observations with the Subaru Telescope**** in addition to the existing data, the team have found that the donut-shaped shielding structure (dust torus) of quasars is likely to cause the anisotropy of the ionization level. The dust torus is the indispensable structure of the standard quasar model.

 

Thus, the above results observationally support the existence of a dust torus and suggest that its effects may extend to distant intergalactic gas. They are also important for exploring the history of ionization of the entire universe and studying the internal structure of quasars.

 

The results of this research were published in the academic journal “The Astrophysical Journal” (IF: 5.521) of the American Astronomical Society.

 

See below for details.

Title : Exploratory Study of Transverse Proximity Effect around BAL Quasars

Authors : Toru Misawa, Rikako Ishimoto, Satoshi Kobu, Nobunari Kashikawa, Katsuya Okoshi, Akatoki Noboriguchi, Malte Schramm, Qiang Liu

Journal:The Astrophysical Journal (2022, ApJ, 933, 239)

Published on July 19, 2022

DOI: https://doi.org/10.3847/1538-4357/ac7715

 

* Toru Misawa (1), Rikako Ishimoto (2), Satoshi Kobu (1), Nobunari Kashikawa (2), Katsuya Okoshi (3), Akatoki Noboriguchi (1), Malte Schramm (4), Qiang Liu (1) (1: Shinshu University, 2: The University of Tokyo, 3: Tokyo University of Science, 4: Saitama University at the time of research)

** A phenomenon in which a hydrogen atom is exposed to ultraviolet radiation and its electron is stripped off, separating into a proton with positive charge and an electron with negative charge.

*** A dilute gas, composed mainly of hydrogen, and distributed in the vast space between galaxies.

**** Japanese optical infrared telescope with a diameter of 8.2 meters on the Big Island of Hawaii.



Journal

The Astrophysical Journal

DOI

10.3847/1538-4357/ac7715

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Exploratory Study of the Transverse Proximity Effect around BAL Quasars

Article Publication Date

19-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

spilker-justin-jwst-nature.jpg

Webb telescope detects universe’s most distant organic molecules

June 6, 2023
Scuba Diving

CRISPR/Cas9 reveals a key gene involved in the evolution of coral skeleton formation

June 5, 2023

CAREER award benefits UH chemist’s research into brain cells and degenerative diseases

June 5, 2023

Fungi stores a third of carbon from fossil fuel emissions and could be essential to reaching net zero, new study reveals

June 5, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    41 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Programmable 3D printed wound dressing could improve treatment for burn, cancer patients

Team develops smartphone app to enhance midwifery care in Tanzania

Webb telescope detects universe’s most distant organic molecules

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In