• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unlocking the impact of solvents on catalytic C–H bond oxidation by copper(II)–alkylperoxo complex

Bioengineer by Bioengineer
March 8, 2024
in Chemistry
Reading Time: 2 mins read
0
Professor Jaeheung Cho (far left) and his research team at UNIST
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A groundbreaking discovery in the field of catalysis has emerged from the laboratories of Professor Jaeheung Cho and his team in the Department of Chemistry at UNIST. Their pioneering work has led to the development of a copper(II)–alkylperoxo complex that promises to revolutionize the realms of synthetic chemistry and industrial applications.

Professor Jaeheung Cho (far left) and his research team at UNIST

Credit: UNIST

A groundbreaking discovery in the field of catalysis has emerged from the laboratories of Professor Jaeheung Cho and his team in the Department of Chemistry at UNIST. Their pioneering work has led to the development of a copper(II)–alkylperoxo complex that promises to revolutionize the realms of synthetic chemistry and industrial applications.

The key to this innovative catalyst lies in its remarkable ability to decompose strong carbon-hydrogen bonds (C−H bonds) through harnessing specific solvents. By precisely manipulating the solvent environment, the researchers have uncovered the exceptional reactivity of their copper(II)–alkylperoxo complex.

Through a meticulously designed series of experiments, the research team successfully synthesized the copper(II)–alkylperoxo complex and subjected it to supercritical carbon dioxide (SC-CO2), a fluid state of carbon dioxide that exhibit both gas and liquid properties simultaneously. This novel approach resulted in the most reactive metal–alkylperoxo peroxide compound to date.

Professor Cho highlighted, “Our comprehensive analysis of oxidation reactions and advanced theoretical calculations have introduced a new era in oxidation catalysis utilizing copper(II)–alkylperoxo as a catalyst.”

Of particular significance is the oxidation of unactivated alkanes, like methane and ethane, traditionally known for their stability and energy-intensive oxidation processes. By tailoring the copper(II)–alkylperoxo complex composition, the researchers achieved selective oxidation of unactivated alkanes, a pivotal advancement in catalytic science. Moreover, the team’s exploration of various solvents confirmed the unprecedented ability of their catalyst to break down resilient C−H bonds.

Yuri Lee, the first author of the study, emphasized, “Our research signifies a milestone in reactivity manipulation through solvent engineering within copper(II)–alkylperoxo species.”

Professor Cho further underlined, “Our work not only showcases the exceptional oxidation capabilities of copper(II)–alkylperoxo species, but also elucidates their solvent-dependent reactivity, laying the foundation for cutting-edge metal catalysts in various scientific domains.”

The research team anticipates that this transformative research not only propels the boundaries of synthetic chemistry, but also holds immense promise for environmental and industrial applications, heralding a new era of catalytic excellence and sustainable technology. This research, with Professor Jaeheung Cho as the corresponding author, was published in the online version of ACS Catalysis on February 20, 2024. The study received funding from the National Research Foundation of Korea (NRF) and the Ministry of Science and ICT (MSIT), highlighting its importance in advancing eco-friendly technologies and catalytic innovation.

Journal Reference
Yuri Lee, Bohee Kim, Seonghan Kim, et al., “Influence of Solvents on Catalytic C–H Bond Oxidation by a Copper(II)–Alkylperoxo Complex,” ACS Catal., (2024)



Journal

ACS Catalysis

Article Title

Influence of Solvents on Catalytic C–H Bond Oxidation by a Copper(II)–Alkylperoxo Complex

Article Publication Date

20-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    74 shares
    Share 30 Tweet 19
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Genetic Diversity and Virulence in Cupriavidus

Stress Hyperglycemia’s Role in Delirium from Pneumonia

Hanbat National University Study Reveals Quantum Computing’s Potential to Enhance Smart, Eco-Friendly Homes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.