• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 14, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Unlocking crop diversity by manipulating plant sex

Bioengineer by Bioengineer
February 21, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr Ian Henderson

Plant geneticists at the University of Cambridge have found that different wild varieties of thale cress (Arabidopsis) show different levels of recombination – the process by which genes come together in new configurations during reproduction. Recombination has a major effect on species evolution by contributing to variation between siblings and within populations.

The group's findings, published today in the journal Genes and Development, identify the HEI10 gene as controlling plant recombination. Unexpectedly the authors found that adding extra copies of the HEI10 gene greatly stimulated recombination and levels of diversity in offspring.

These findings may find application when new traits need to be introduced into elite crop varieties. For example, when bringing novel disease resistance genes from wild relatives into farmed varieties of crop plants.

A major problem in many crop species, including wheat and maize, is that recombination events are limited both in number and their distribution along chromosomes, which can severely limit crop improvement. As HEI10 is conserved in crop species this gene presents an attractive target to increase recombination levels – something the laboratory are now actively pursuing.

"This was really unexpected and is the biggest effect on recombination we have found since beginning our research in Cambridge," said Dr Henderson. "We are very excited that a discovery from our basic research program might provide a key to unlock plant diversity and accelerate crop breeding."

###

This work was performed by a collaborating international team of scientists from the University of Cambridge (UK), Cold Spring Harbor Laboratory (USA), the University of Birmingham (UK) and Adam Mickiewicz University (Poland).

Media Contact

Ian Henderson
[email protected]
44-122-374-8977
@Cambridge_Uni

http://www.cam.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Superbug killer: New nanotech destroys bacteria and fungal cells

April 14, 2021
IMAGE

Rapid decreases in resting heart rate from childhood to adulthood may indicate heart trouble ahead

April 14, 2021

Dueling evolutionary forces drive rapid evolution of salamander coloration

April 14, 2021

Cascading effects of noise on plants persist over long periods and after noise is removed

April 14, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyEcology/EnvironmentChemistry/Physics/Materials SciencesPublic HealthClimate ChangeMedicine/HealthMaterialsTechnology/Engineering/Computer SciencecancerGeneticsCell BiologyInfectious/Emerging Diseases

Recent Posts

  • Superbug killer: New nanotech destroys bacteria and fungal cells
  • Rapid decreases in resting heart rate from childhood to adulthood may indicate heart trouble ahead
  • Dueling evolutionary forces drive rapid evolution of salamander coloration
  • Cascading effects of noise on plants persist over long periods and after noise is removed
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In