• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

University of Ottawa tool to democratize nanopore research

Bioengineer by Bioengineer
January 14, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: T.-Cossa Lab, Department of Physics, University of Ottawa


A nanopore is a tiny hole in a thin membrane with a diameter of around a billionth of a meter, or about the width of a single DNA molecule. The potential applications of these nanopores are so diverse – from medicine to information technology (IT) – that they could have a major impact on our daily lives. Now a team of researchers at the University of Ottawa is democratizing entry into the field of nanopore research by offering up a unique tool to accelerate the development of new applications and discoveries.

The innovative T.-Cossa Lab, which studies applied single-molecule biophysics, came up with the idea to provide the research community with the protocols, hardware designs, and software required to fabricate solid-state nanopores in a fast, low cost, and completely automated fashion. This method is now available in the online journal Nature Protocols.

The move is a boon for researchers developing diagnostic and sequencing applications in health, life sciences, and IT, where being able to detect and identify single biological molecules like proteins or DNA with the exacting precision of a nanopore is needed.

“For the first time, we are making our unique nanopore fabrication tool freely available,” explained Vincent Tabard-Cossa, professor in the Department of Physics and Director of the Laboratory for Applied Single-Molecule Biophysics at the University of Ottawa. “We opted to offer our patented nanopore fabrication technology to the research community for free, to help disseminate it and expand the field of nanopore research.”

Solid-state nanopores are now well established as single-biomolecule sensors which hold enormous promise for fast and low-cost sensing and sequencing applications, including rapid identification of pathogens, biomarker quantification for precision medicine, metagenomics, microbiome analysis, and cancer research. However, until recently, this promise had been stifled by the expensive, labor intensive, and low-yield methods by which pores were fabricated. To address this problem, Professor Tabard-Cossa and his team pioneered a cheap and scalable solid-state nanopore fabrication method in 2012 called controlled breakdown (CBD), which has since become the method of choice by which solid-state nanopores are fabricated by research groups around the world.

“To foster accessible innovation, we set out to make an instrument and workflow that could be operated successfully by someone who had never even heard of a nanopore,” said Matthew Waugh, lab manager of the T.-Cossa Lab. “We’ve already had some amazing successes through a local scientific outreach program where high school students have been able to independently produce nanopores and detect individual DNA molecules in a single afternoon using our tools.”

CBD pore fabrication replaces expensive, manually operated electron microscopes with low cost, easy-to-use, small benchtop instruments that automatically fabricate nanopores to a given size at the click of a button. According to Dr. Tabard-Cossa, researchers can now focus their attention on developing different real-world nanopore applications in various fields.

“One such application tackles the growing need to store and archive huge amounts of digital information for very long timescales,” said Kyle Briggs, postdoctoral fellow in the T.-Cossa lab. “Nature solved this problem a long time ago with DNA, and a similar approach will work for us, in which the information is stored as the sequence of a synthetic polymer, reducing server farms down to the size of a fridge and saving billions of dollars in energy costs and fried hard drives. Solid-state nanopores could enable the next major breakthrough in data storage since they can be used as the element that reads the information off the polymers,” he added.

Video: https://www.youtube.com/watch?v=s98–BRCCWY&feature=emb_logo

###

The paper Waugh, M., Briggs, K., Gunn, D. et al. Solid-state nanopore fabrication by automated controlled breakdown. Nat Protoc 15, 122-143 (2020) doi:10.1038/s41596-019-0255-2 was published in the January issue of Nature Protocols.

For media inquiries:

Justine Boutet

Media Relations Officer

Cell: 613.762.2908

[email protected]

Media Contact
Justine Boutet
[email protected]
613-762-2908

Original Source

http://media.uottawa.ca/news/uottawa-tool-democratize-nanopore-research

Related Journal Article

http://dx.doi.org/10.1038/s41596-019-0255-2

Tags: cancerChemistry/Physics/Materials SciencesMedicine/HealthNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Carers in Australia: Blessings and Challenges Explored

October 4, 2025

Herbal Remedies for Hypertension: Insights from Trinidad

October 4, 2025

Impact of Triglyceride-Glucose Index on Neonatal Health

October 4, 2025

Decoding MAG, PTEN, NOTCH1 in Axonal Regeneration

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carers in Australia: Blessings and Challenges Explored

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

Herbal Remedies for Hypertension: Insights from Trinidad

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.