• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

University of Guelph researchers unlock access to pain relief potential of cannabis

Bioengineer by Bioengineer
July 23, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Guelph

University of Guelph researchers are the first to uncover how the cannabis plant creates important pain-relieving molecules that are 30 times more powerful at reducing inflammation than Aspirin.

The discovery unlocks the potential to create a naturally derived pain treatment that would offer potent relief without the risk of addiction of other painkillers.

“There’s clearly a need to develop alternatives for relief of acute and chronic pain that go beyond opioids,” said Prof. Tariq Akhtar, Department of Molecular and Cellular Biology, who worked on the study with MCB professor Steven Rothstein. “These molecules are non-psychoactive and they target the inflammation at the source, making them ideal painkillers.”

Using a combination of biochemistry and genomics, the researchers were able to determine how cannabis makes two important molecules called cannflavin A and cannflavin B.

Known as “flavonoids,” cannflavins A and B were first identified in 1985, when research verified they provide anti-inflammatory benefits that were nearly 30 times more effective gram-for-gram than acetylsalicylic acid (sold as Aspirin).

However, further investigation into the molecules stalled for decades in part because research on cannabis was highly regulated. With cannabis now legal in Canada and genomics research greatly advanced, Akhtar and Rothstein decided to analyze cannabis to understand how Cannabis sativa biosynthesizes cannflavins.

“Our objective was to better understand how these molecules are made, which is a relatively straightforward exercise these days,” said Akhtar. “There are many sequenced genomes that are publicly available, including the genome of Cannabis sativa, which can be mined for information. If you know what you’re looking for, one can bring genes to life, so to speak, and piece together how molecules like cannflavins A and B are assembled.”

With the genomic information at hand, they applied classical biochemistry techniques to verify which cannabis genes were required to create cannflavins A and B. Their full findings were recently published in the journal Phytochemistry.

These findings provide the opportunity to create natural health products containing these important molecules.

“Being able to offer a new pain relief option is exciting, and we are proud that our work has the potential to become a new tool in the pain relief arsenal,” said Rothstein.

Currently, chronic pain sufferers often need to use opioids, which work by blocking the brain’s pain receptors but carry the risk of significant side effects and addiction. Cannflavins would target pain with a different approach, by reducing inflammation.

“The problem with these molecules is they are present in cannabis at such low levels, it’s not feasible to try to engineer the cannabis plant to create more of these substances,” said Rothstein. “We are now working to develop a biological system to create these molecules, which would give us the opportunity to engineer large quantities.”

The research team has partnered with a Toronto-based company, Anahit International Corp., which has licensed a patent from the University of Guelph to biosynthesize cannflavin A and B outside of the cannabis plant.

“Anahit looks forward to working closely with University of Guelph researchers to develop effective and safe anti-inflammatory medicines from cannabis phytochemicals that would provide an alternative to non-steroidal anti-inflammatory drugs,” said Anahit chief operating officer Darren Carrigan.

“Anahit will commercialize the application of cannflavin A and B to be accessible to consumers through a variety of medical and athletic products such as creams, pills, sports drinks, transdermal patches and other innovative options.”

###

Media Contact
Tariq Ahktar
[email protected]

Original Source

https://news.uoguelph.ca/2019/07/u-of-g%e2%80%afresearchers-first-to-unlock-access-to-pain%e2%80%afrelief%e2%80%afpotential-of-cannabis%e2%80%af/

Related Journal Article

http://dx.doi.org/10.1016/j.phytochem.2019.05.009

Tags: BiochemistryBiologyMedicine/HealthMolecular BiologyneurobiologyNeurochemistryPainPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Home-based HPV Self-Sampling Acceptance in Cameroon

October 5, 2025

Psychological Resilience Mediates Care in Nursing Interns

October 5, 2025

Revolutionizing Preterm Infant Care in Resource-Limited Settings

October 5, 2025

Rethinking Nonoperative Approaches in Treating Pediatric Uncomplicated Acute Appendicitis

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Zeolite-Template Chemical Space: A Comprehensive Mapping

Exploring Home-based HPV Self-Sampling Acceptance in Cameroon

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.