• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

University of Groningen scientists design superfast molecular motor

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Light-driven molecular motors have been around for over twenty years. These motors typically take microseconds to nanoseconds for one revolution. Thomas Jansen, associate professor of physics at the University of Groningen, and Master’s student Atreya Majumdar have now designed an even faster molecular motor. The new design is driven by light only and can make a full turn in picoseconds, using the power of a single photon. Jansen: ‘We have developed a new out-of-the-box design for a motor molecule that is much faster.’ The design was published in The Journal of Physical Chemistry Letters on 7 June.

The new motor molecule design started with a project in which Jansen wanted to understand the energy landscape of excited chromophores. ‘These chromophores can attract or repel each other. I wondered if we could use this to make them do something’, explains Jansen. He gave the project to Atreya Majumdar, then a first-year student in the Top Master’s degree programme in Nanoscience in Groningen. Majumdar simulated the interaction between two chromophores that were connected to form a single molecule.

Light

Majumdar, who is now a PhD student in nanoscience at the Université Paris-Saclay in France, explains what he found: ‘A single photon will excite both chromophores simultaneously, creating dipoles that make them repel each other.’ But as they are stuck together, connected by a triple bond axis, the two halves push each other away around the axis. ‘During this movement, they start to attract each other.’ Together, this results in a full rotation, generated by the light energy and the electrostatic communication between the two chromophores.

The original light-driven molecular motor was developed by Jansen’s colleague Ben Feringa, Professor of Organic Chemistry at the University of Groningen and recipient of the 2016 Nobel Prize for Chemistry. This motor makes one revolution in four steps. Two steps are driven by light and two are driven by heat. ‘The heat steps are rate-limiting,’ explains Jansen. ‘The molecule has to wait for a fluctuation in heat energy to drive it to the next step.’

Bottlenecks

By contrast, in the new design, a rotation is fully downhill from an excited state. And as – due to the laws of quantum dynamics – one photon excites both chromophores simultaneously, there are no major bottlenecks to limit the speed of rotation, which is therefore two to three orders of magnitude greater than that of the classic ‘Feringa’ motors.

Blueprint

As for applications, Jansen can think of a handful. They might be used to power drug delivery or move nanoscale objects on a surface, or they might be used in other nanotech applications. And the rotational speed is well above that of the average biophysical process, so it may be used to control biological processes. In the simulations, the motors were attached to a surface but they will also rotate in solution. Jansen: ‘It will require a lot of engineering and tweaking to realize these motors but our blueprint will deliver a brand-new type of molecular motor.’

###

Reference: Atreya Majumdar and Thomas L. C. Jansen: Quantum-Classical Simulation of Molecular Motors Driven Only by Light. The Journal of Physical Chemistry Letters, online 7 June 2021.

Media Contact
Rene Fransen
[email protected]

Original Source

https://www.rug.nl/sciencelinx/nieuws/2021/06/university-of-groningen-scientists-design-superfast-molecular-motor

Related Journal Article

http://dx.doi.org/10.1021/acs.jpclett.1c00951

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials Scienceslight-driven nanotechmolecular motorMolecular PhysicsNanotechnology/MicromachinesNobel Prize research linkpicosecond rotationquantum-classical simulation
Share12Tweet8Share2ShareShareShare2

Related Posts

Global Trends in Childhood Leukemia Burden (1990-2021)

October 17, 2025

Congenital Hypothyroidism Complicates Diagnosis of Puberty Case

October 17, 2025

Green Tea Polyphenols Protect Brain Barrier in Ischemia

October 17, 2025

Comparing Productivity: Mechanical vs. Manual Rice Transplanting

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Trends in Childhood Leukemia Burden (1990-2021)

Congenital Hypothyroidism Complicates Diagnosis of Puberty Case

Green Tea Polyphenols Protect Brain Barrier in Ischemia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.