• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

University of Barcelona researchers develop new variant of Maxwell’s demon at nanoscale

Bioengineer by Bioengineer
April 17, 2019
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: M. Ribezzi-Crivellari et al.

Maxwell’s demon is a machine proposed by James Clerk Maxwell in 1897. The hypothetical machine would use thermal fluctuations to obtain energy, apparently violating the second principle of thermodynamics. Now, researchers of the University of Barcelona have presented the first theoretical and experimental solution of a continuous version of Maxwell’s demon in a single molecule system. The results, published in the journal Nature Physics, can have applications in other fields, such as biological and quantum systems.

“Despite its simplicity and the large amount of work in the field this new variant of the classical Maxwell demon has remained unexplored until now”, notes Fèlix Ritort, professor from the Department of Fundamental Physics of the UB. “In this study -he adds-, we introduced a system able to extract large amounts of work arbitrarily per cycle through repeated measurements of the state of a system”.

Finding the favourable moment

Waiting for such a propitious occasion to get benefits is something we all know. This behavioural pattern is the same of a speculator waiting for the right moment in stock exchange, or a predator waiting for a prey to be near. “From a thermodynamics point of view, that certain intuitive aspect in trying to look for the right moment is what takes more energy. The answer is whether it is possible to get the same energy from the propitious moment than the inverted one in the searching process, i.e. through a thermodynamically reversible process”, notes Marco Ribezzi, researcher at the UB and the School of Industrial Physics and Chemistry (ESPCI Paris/CNRS).

“Our experiments demonstrate it is possible to find the right moment, and not very common at the same time, and to use it in a reversible way. These results show the underlying thermodynamic structure to a general problem that can find many applications, for instance, in the field of biology”, notes Ribezzi.

According to the researchers, the new version of Maxwell’s demon could have consequences in self-organization and selection processes that occur during evolution of the biological matter. For instance, this device could be relevant in the regulation of biological networks in generation, transmission and transduction of signals through cell membranes.

The experimental testing has been conducted in a system of optical tweezers, which enables the manipulation of a molecule each time, in this case a DNA molecule. With the right force on this structure, it is possible to unfold it, but if the force is small enough, the unfolded state becomes rare, so it finds the precise moment it was looking for. When the molecule is in a rare state, it has more energy and it is possible to use it. “The rarer the episode, the harder for us to find it, but the more energy we can get from it”, notes Ribezzi.

“The astonishing complexity of the living matter could be seen as the result, over several evolutionary timescales, of a big process of energy extraction in proper environments to store big amounts of information which is hidden by noise and randomness”, concludes Ritort, also member of the Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN).

###

Within the program Future and Emerging Technologies (FET), this study has been conducted as part of the European project Information, Fluctuations and Energy Control in Small Systems (INFERNOS), with the aim to experiment on the Maxwell’s mechanism at a nanoscale, i.e the creation of electronic and biomolecular nanodevices to follow the principle of Maxwell’s demon.

Referència de l’article:

M. Ribezzi-Crivellari and F. Ritort. &laquoLarge work extraction and the Landauer limit in a continuous Maxwell demon». Nature Physics, abril de 2019. Doi: 10.1038/s41567-019-0481-0

Media Contact
Bibiana Bonmatí
[email protected]

Original Source

https://www.ub.edu/web/ub/en/menu_eines/noticies/2019/04/22.html

Related Journal Article

http://dx.doi.org/10.1038/s41567-019-0481-0

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

C-Path and Global Partners launch Ataxia Consortium

February 26, 2021
IMAGE

Quantum quirk yields giant magnetic effect, where none should exist

February 26, 2021

Meteorites remember conditions of stellar explosions

February 26, 2021

How photoblueing disturbs microscopy

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In