• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

University of Barcelona researchers develop new variant of Maxwell’s demon at nanoscale

Bioengineer by Bioengineer
April 17, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: M. Ribezzi-Crivellari et al.

Maxwell’s demon is a machine proposed by James Clerk Maxwell in 1897. The hypothetical machine would use thermal fluctuations to obtain energy, apparently violating the second principle of thermodynamics. Now, researchers of the University of Barcelona have presented the first theoretical and experimental solution of a continuous version of Maxwell’s demon in a single molecule system. The results, published in the journal Nature Physics, can have applications in other fields, such as biological and quantum systems.

“Despite its simplicity and the large amount of work in the field this new variant of the classical Maxwell demon has remained unexplored until now”, notes Fèlix Ritort, professor from the Department of Fundamental Physics of the UB. “In this study -he adds-, we introduced a system able to extract large amounts of work arbitrarily per cycle through repeated measurements of the state of a system”.

Finding the favourable moment

Waiting for such a propitious occasion to get benefits is something we all know. This behavioural pattern is the same of a speculator waiting for the right moment in stock exchange, or a predator waiting for a prey to be near. “From a thermodynamics point of view, that certain intuitive aspect in trying to look for the right moment is what takes more energy. The answer is whether it is possible to get the same energy from the propitious moment than the inverted one in the searching process, i.e. through a thermodynamically reversible process”, notes Marco Ribezzi, researcher at the UB and the School of Industrial Physics and Chemistry (ESPCI Paris/CNRS).

“Our experiments demonstrate it is possible to find the right moment, and not very common at the same time, and to use it in a reversible way. These results show the underlying thermodynamic structure to a general problem that can find many applications, for instance, in the field of biology”, notes Ribezzi.

According to the researchers, the new version of Maxwell’s demon could have consequences in self-organization and selection processes that occur during evolution of the biological matter. For instance, this device could be relevant in the regulation of biological networks in generation, transmission and transduction of signals through cell membranes.

The experimental testing has been conducted in a system of optical tweezers, which enables the manipulation of a molecule each time, in this case a DNA molecule. With the right force on this structure, it is possible to unfold it, but if the force is small enough, the unfolded state becomes rare, so it finds the precise moment it was looking for. When the molecule is in a rare state, it has more energy and it is possible to use it. “The rarer the episode, the harder for us to find it, but the more energy we can get from it”, notes Ribezzi.

“The astonishing complexity of the living matter could be seen as the result, over several evolutionary timescales, of a big process of energy extraction in proper environments to store big amounts of information which is hidden by noise and randomness”, concludes Ritort, also member of the Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN).

###

Within the program Future and Emerging Technologies (FET), this study has been conducted as part of the European project Information, Fluctuations and Energy Control in Small Systems (INFERNOS), with the aim to experiment on the Maxwell’s mechanism at a nanoscale, i.e the creation of electronic and biomolecular nanodevices to follow the principle of Maxwell’s demon.

Referència de l’article:

M. Ribezzi-Crivellari and F. Ritort. &laquoLarge work extraction and the Landauer limit in a continuous Maxwell demon». Nature Physics, abril de 2019. Doi: 10.1038/s41567-019-0481-0

Media Contact
Bibiana Bonmatí
[email protected]

Original Source

https://www.ub.edu/web/ub/en/menu_eines/noticies/2019/04/22.html

Related Journal Article

http://dx.doi.org/10.1038/s41567-019-0481-0

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lack of Evidence Supports Ketamine Use in Chronic Pain Management

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.