• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

University of Arkansas chemist to develop computational models of influenza virus protein

Bioengineer by Bioengineer
October 16, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NIH grant will support research to provide a computational framework for developing novel vaccines and therapeutics for the flu

IMAGE

Credit: Mahmoud Moradi

Chemist Mahmoud Moradi has received a $422,579 grant from the National Institutes of Health to advance his work modeling hemagglutinin, the critical protein of the influenza virus. The research will provide a computational framework for developing novel vaccines and therapeutics for many strains of the flu.

Moradi’s research lies at the intersection of biology, physics, chemistry, mathematics, statistics and computer science. He uses elements of these disciplines to build three-dimensional, dynamic models of proteins and other biomolecules that describe how the proteins and molecules behave and change their shape to conform and bind to human cell receptors.

For this project, Moradi and researchers in his Biomolecular Simulations Group will focus on developing simulations of the pH-triggered activation mechanism of hemagglutinin. In basic chemistry, pH is a scale of acidity or basicity of an aqueous solution. Previous research has shown that the activation of the hemagglutinin protein is caused by a change in the pH of its environment, a process that facilitates fusion between viral membranes and those on human cells. Researchers think that if this pH-triggered activation can be inhibited, it could provide a new framework for developing universal vaccines and therapeutics for influenza.

Commonly known as the flu, influenza claims the lives of tens of thousands of people globally every year. This viral disease is caused by the influenza virus, which has a high mutation rate and thus requires seasonal vaccination.

Scientists have pushed for a universal influenza vaccine that could provide broader and longer protection against different strains of the flu. This effort has led researchers to focus on novel proteins and strategies that rely heavily on the kind of computational techniques developed by Moradi.

In addition to the NIH grant, Moradi’s research benefits from use of several large supercomputers sponsored by the National Science Foundation. He recently received computing allocation equal to $3.3 million from the Extreme Science and Engineering Discovery Environment program, the NSF’s virtual system for helping scientists share computing resources, data and expertise.

Another line of Moradi’s work focuses on coronavirus spike glycoproteins, which function similarly to influenza virus hemagglutinin proteins. In April, he was granted time on an NSF-sponsored supercomputer to develop enhanced, three-dimensional simulations of coronavirus spike glycoproteins. This work, as part of the COVID-19 High Performance Computing Consortium, a collaboration of government, industry and academic partners, is helping scientists understand how the coronavirus binds to human cells.

In February, Moradi received a $650,000 National Science Foundation Faculty Early Career Development award.

###

Media Contact
Mahmoud Moradi
[email protected]

Original Source

https://researchfrontiers.uark.edu/moradi-to-develop-computational-models-of-influenza-virus-protein/

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carbon Fiber Boosts Zirconium Diboride in 3D Printing

Revolutionary Support Program for Families of Cancer Patients

Spatial Multiomics Uncovers Immune Dysfunction in Parkinson’s, IBD

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.