• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UNH researchers find unusual phenomenon in clouds triggers lightning flash

Bioengineer by Bioengineer
April 10, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo Credit: UNH

DURHAM, N.H.–In a first-of-its-kind observation, researchers from the University of New Hampshire Space Science Center have documented a unique event that occurs in clouds before a lightning flash happens. Their observation, called “fast negative breakdown,” documents a new possible way for lightning to form and is the opposite of the current scientific view of how air carries electricity in thunderstorms.

“This is the first time fast negative breakdown has ever been observed, so it’s very exciting,” said Ningyu Liu, professor of physics. “Despite over 250 years of research, how lightning begins is still a mystery. The process was totally unexpected and gives us more insight into how lightning starts and spreads.”

Their finding, published in the journal Nature Communications, is another step toward answering the question of how lightning begins. Recently, the problem of lightning initiation seemed to be solved with the discovery of “fast positive breakdown” of air, which matched the theory long held by lightning researchers. Fast positive breakdown involves the downward development of a pathway in the cloud, moving from the positive charge at the top of the cloud to the negative charge in the middle of the cloud. The pathway forms at one-fifth the speed of light and can trigger lightning. However, the newly reported observation of fast negative breakdown shows that an upward pathway — going in the opposite direction and just as fast — can be created in a thundercloud, indicating there’s another way to start electricity in the air. Ultimately, this provides scientists with a new view of what’s possible inside a storm cloud.

“These findings indicate that lightning creation within a cloud might be more bidirectional than we originally thought,” said Julia Tilles, a doctoral candidate in the UNH Space Science Center.

In collaboration with a lightning research team from New Mexico Institute of Mining and Technology, the researchers documented fast negative breakdown in a Florida lightning storm at Kennedy Space Center using radio waves originating deep inside the storm clouds. An array of ground-based antennas picked up the radio waves, which then allowed researchers to create a highly detailed image of the radio sources and identify this unusual phenomenon.

Researchers continue to develop images from the data and hope to learn more about how often fast negative breakdown events occur and what fraction of them can initiate an actual lightning flash.

###

Funding for this research was provided by the National Science Foundation and the Air Force Office of Scientific Research.

The University of New Hampshire inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top-ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of study. As one of the nation’s highest-performing research universities, UNH partners with NASA, NOAA, NSF and NIH, and receives more than $110 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

PHOTOS FOR DOWNLOAD

https://www.unh.edu/unhtoday/sites/default/files/media/installingsensor.jpg

Caption: Researchers install electric field sensors in ground-based antennas that help determine the current direction that triggers lightning in the clouds.

Photo Credit: Julia Tilles

https://www.unh.edu/unhtoday/sites/default/files/media/lightning1.png

Caption: The lightning seen here starts out deep inside the cloud where scientists continue to study its first moments. In their study, UNH researchers observed a possible new way that lightning forms called “fast negative breakdown.”

Photo Credit: UNH

https://www.unh.edu/unhtoday/sites/default/files/media/lightning2.jpg

Caption: The lightning seen here starts out deep inside the cloud where scientists continue to study its first moments. In their study, UNH researchers observed a possible new way that lightning forms called “fast negative breakdown.”

Photo Credit: UNH

Media Contact
Robbin Ray
[email protected]

Original Source

https://www.unh.edu/unhtoday/news/release/2019/04/10/unh-researchers-find-unusual-phenomenon-clouds-triggers-lightning-flash

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-09621-z

Tags: AstrophysicsAtmospheric ChemistryAtmospheric ScienceMeteorologyWeather/Storms
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025
Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

October 29, 2025

Enhancing Hygiene and Usability of Menstrual Cups: A Scientific Breakthrough

October 29, 2025

Innovative Carbon Support Enhances Performance and Longevity of Low-Platinum Fuel Cells

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine Learning Enhances Breast Cancer Survival Predictions

Hypoxia Alters Calpastatin, Influencing Trophoblast Function

Unlocking Longevity: How a Unique Protein Repairs DNA in Bowhead Whales

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.