• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, March 25, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Unexpected activity of 2 enzymes helps explain why liver cancer drugs fail

Bioengineer by Bioengineer
December 13, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Gen-Sheng Feng, UC San Diego Health

Some cancers are caused by loss of enzymes that should keep cell growth in check. On the flip side, some are caused by over-activation of enzymes that enhance cell growth. Yet drugs that inhibit the overactive enzymes have failed to work against liver cancer. In mouse models, researchers at University of California San Diego School of Medicine have discovered a potential reason — counterintuitively, lack of both types of these enzymes can lead to liver disease and cancer. In human liver tumor samples, they also found that deficiencies in these two enzymes, called Shp2 and Pten, are associated with poor prognosis.

The study, published December 13 by Cell Reports, provides a new understanding of how liver cancer develops, a new therapeutic approach and new mouse model for studying the disease.

"When it comes to liver cancer, I think we've been making strategic mistakes," said senior author Gen-Sheng Feng, PhD, professor of pathology and biological sciences at UC San Diego. "In cancer development, we always thought about two distinct families of enzymes — one promotes cancer, one inhibits it. Many drugs have been developed to block the cancer-promoting pathways, but we and others are now finding that many classical pro-cancer proteins are actually inhibitors."

Based on Shp2's well-known role in promoting tumor formation, researchers have long assumed that drugs that block the enzyme would inhibit tumor formation. But Feng's team previously found the opposite to be true — loss of the Shp2 enzyme can promote liver cancer. In contrast, in a study published last year , Feng and team discovered that removing both Shp2 and Pten, a tumor-suppressing enzyme, neutralized leukemia development.

"So the roles of tumor-promoting and tumor-suppressing enzymes are not as simple as we thought," Feng said. "This also explains many unwanted side effects with drugs that target these enzymes. Their consequences can differ depending on cell type."

In this latest study, Feng and team found that Shp2 and Pten cooperate to suppress liver tumor formation in experimental mice. When the researchers deleted both the Shp2 and Pten genes specifically in the mice's liver cells, early-onset liver disease (non-alcoholic steatohepatitis, or NASH) was more severe and liver tumors occurred earlier and more frequently than in control mice with one or both enzymes functioning.

Normal mice did not experience any tumors. In mice lacking either Pten or Shp2, liver tumors began to appear after approximately seven or 12 months. But for mice lacking both enzymes, 80 percent spontaneously developed liver tumors in five months; 100 percent had tumors at seven months.

The increased severity of liver disease and frequency of liver cancer in these models is likely because lack of Shp2 and Pten enzymes activates molecules involved in lipid metabolism, inflammation and fibrosis, the researchers said.

After their surprising results in mice, the researchers wondered if the same phenomenon occurs in human liver cancers. They analyzed 335 human liver tumor samples and found that approximately 52 percent of the tumors were low in both Shp2 and Pten enzyme levels. Those patients with low Shp2 and Pten enzyme levels in the tumors had a poorer prognosis than those with higher levels of one or both enzymes — at 50 months after surgery, approximately 60 percent of patients with low Shp2 and Pten were alive, compared to approximately 90 percent of patients with high Shp2 and Pten levels.

These results provide new information about how liver cancer arises and a new target for drug development. But the findings also offer a new laboratory model for studying the disease. Previously, Feng's team and others would use chemical carcinogens to induce liver cancer in mouse models. Instead of taking this artificial approach, Feng said researchers can now generate more realistic mouse models of non-alcoholic fatty liver disease and liver cancer simply by removing the Pten and Shp2 enzymes.

"Liver cancer is more complicated than we thought. These pathways, when over-activated, stimulate tumor development, but so does inhibiting them," Feng said. "That's why we can't rush to conclusions like we have in the past. But now that we have a good model that mimics the human pathogenic process and we can use that to work out the mechanisms that lead to liver disease and cancer, and search for novel drug targets."

###

Co-authors of this study include: Xiaolin Luo, Kaisa L. Hanley, Helen He Zhu, Kirsten N. Malo, Carolyn Hernandez, Nissi M. Varki, Nazilla Alderson, Catherine Chu, Shuangwei Li, Rohit Loomba, UC San Diego; Rui Liao, UC San Diego, Fudan University, and Chongqing Medical Unversity; Xufu Wei, UC San Diego, and Chongqing Medical University; Jia Fan, Shuang-Jian Qiu, Fudan University.

Media Contact

Heather Buschman
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Transitions of low and high-entropy metal tellurides.

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

March 25, 2023
Assistant Professor Ren Wang

Illinois Tech Assistant Professor Ren Wang receives prestigious National Science Foundation Award

March 24, 2023

New type of entanglement lets scientists ‘see’ inside nuclei

March 24, 2023

NIH awards researchers $7.5 million to create data support center for opioid use disorder and pain management research

March 24, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    65 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

Illinois Tech Assistant Professor Ren Wang receives prestigious National Science Foundation Award

New type of entanglement lets scientists ‘see’ inside nuclei

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In