• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Understanding the love-hate relationship of halide perovskites with the sun

Bioengineer by Bioengineer
July 10, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research by scientists at TU/e and universities in China and the US sheds light on the causes of perovskite solar cell degradation.

IMAGE

Credit: Shuxia Tao (TU/e)

Solar cells made of perovskite are at the center of much recent solar research. The material is cheap, easy to produce and almost as efficient as silicon, the material traditionally used in solar cells. However, perovskite cells have a love-hate-relationship with the sun. The light that they need to generate electricity, also impairs the quality of the cells, severely limiting their efficiency and stability over time. Research by scientists at the Eindhoven University of Technology and universities in China and the US now sheds new light on the causes of this degradation and paves the way for designing new perovskite compositions for the ultimate stable solar cells.

Perovskite is an attractive alternative to silicon, because it’s abundant and easy to produce. What’s more, over the past decade, the performance of perovskite solar cells has improved dramatically, with efficiency rates reaching more than 25 percent, which is close to the state-of-art for silicon solar cells.

The new research focuses on perovskite solar cells made from formamidinium-cesium lead iodide, a halide compound that has become increasingly popular as it combines high efficiency and reasonable heat resistance with low manufacturing costs.

Love-hate

However, solar panels made of this particular compound have a rather ambivalent relationship with sunlight, a problem that is well-known in the field, but barely understood. While the light of the sun feeds it with the much-wanted energy to convert into electricity, it also impairs the stability of the cells. Over time this affects their performance.

To understand why this is the case, the researchers at TU/e, Peking University and University of California San Diego did both practical experiments – monitoring the photovoltaic performance of the panels over 600 hours of exposure and characterizing the degraded perovskites – and theoretical analysis.

From this they conclude that sunlight generates charged particles in the perovskite, which tend to flow to places in the solar panel where the band gap (the minimum amount of energy needed for generating the free electrons) is lowest, in this case the formamidinium perovskite. The resulting energy differences make the mixed compounds that worked together so well to make the cell efficient, fall apart into separate clusters. It appears that especially the cesium-heavy clusters (the green dots in the image) are photoinactive and current-blocking, limiting the performance of the device.

Solutions

According to Shuxia Tao, who together with PhD candidate Zehua Chen and her colleague Geert Brocks was responsible for the TU/e part of the research, the new findings are one step further to finding the way to possible solutions.

“By combining macroscopic tests, microscopic materials characterization and atomistic modelling, we were able to thoroughly understand the instability of halide perovskites that are intrinsic to device operation. This opens the possibility for designing new perovskite compositions for the ultimate stable solar cells.”

Possible strategies include using additives to enhance the chemical interaction inside the materials in the panels, tuning the band gaps by using other elements like bromide and rubidium instead of iodide and cesium, or modifying the energy levels to extract photo-carriers more efficiently.

Tao stresses that more research is needed to see what solution works best. In addition, separation of halide compounds is not the only cause for perovskite degradation. These additional causes require separate analysis.

###

The results are published in the scientific magazine Joule.

Li, Y. Luo, Z. Chen, G. Brocks, S. Tao, D. P. Fenning, H. Zhou, et al. Microscopic Degradation in Formamidinium-Cesium Lead Iodide Perovskite Solar Cells under Operational Stressors, DOI: 10.1016/j.joule.2020.06.005

Media Contact
Henk van Appeven
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.joule.2020.06.005

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesClimate ChangeEnergy SourcesEnergy/Fuel (non-petroleum)Molecular PhysicsResearch/DevelopmentSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    70 shares
    Share 28 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Islet Macrophages Remodeled by Limited β-Cell Death

Exploring Disordered Eating and Identity in Students

Cysteine Boosts Gut Stem Cells via IL-22

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.