• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 14, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Understanding microbial communities in fractured shales goal of NSF-sponsored project

Bioengineer by Bioengineer
April 4, 2019
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Taking a deep dive into metabolic pathways introduced underground

IMAGE

Credit: Mike Wilkins/Colorado State University

Many invisible microbes like bacteria, fungi and archaea find a way to thrive in even the harshest conditions, including crevices of hydraulically fractured shales a mile or more underground.

Colorado State University researcher Mike Wilkins is taking a deep dive into the communities of microbes that are introduced underground during the hydraulic fracturing process. His goal is to understand how these microbes drive larger ecosystem functions, both in the Earth’s subsurface as well as other contexts.

Wilkins, assistant professor in the Department of Soil and Crop Sciences and a member of the CSU Microbiome Network, has received a five-year, $550,000 grant from the National Science Foundation to study how particular metabolic pathways within fractured shales, mediated by microbes, affect biogeochemical processes like carbon and nitrogen cycling and the generation of methane.

“I have always been interested in how different factors, such as the chemistry and physical structure of a system, all interact,” said Wilkins, who joined the CSU faculty in 2018. “In this work, we are using quite a unique system: deep fractured shales.”

The grant was awarded through the Faculty Early Career Development Program, which provides research support for outstanding early-career faculty.

Wilkins has studied the microbes that populate fractured shales in prior research he conducted at Ohio State University. He and colleagues previously identified a methylamine-cycling network that appears necessary to support microbial life in those deep, dark crevices, where life somehow persists.

Methylamine is a metabolite that some microbes use as a substrate to make methane, which is composed of carbon and hydrogen and is a greenhouse gas. With the CAREER award, Wilkins will sample shale plays across the Western U.S. to interrogate how carbon and nitrogen are cycled within those environments, and to show more clearly how the methylamine metabolism is critical for the persistence of life in the subsurface.

Studying microbes in shales will give Wilkins’ team insight into fundamental processes that occur in many other, more complex ecosystems.

Wetland ecosystems, for example, have the same methylamine-cycling networks that fractured shales do, but those networks are surrounded by hundreds or thousands of microbial species. In shales, the same processes are mediated by only five or six groups of microbes, so scientists like Wilkins can more easily tease apart which microbes are doing what. Methylamine metabolisms are also present in mammalian gut environments.

“The communities in these shales are actually quite simple, as only certain bugs can live in those conditions,” he said. “So we use techniques to reconstruct their genomes and isolate them in the lab, and it becomes this really tractable system for studying basic ecological processes.”

A comprehensive understanding of how methylamines fuel methanogenesis may also provide new resolution for signatures of life – perhaps yet undiscovered – in subsurface ecosystems, according to Wilkins’ proposal.

The NSF-funded project will include the development of a Front Range-based consortium of microbial scientists working in subsurface systems, with the goal of knowledge sharing and collaboration.

Assistant professor in soil and crop sciences Kelly Wrighton, and department chair Matt Wallenstein, are also recipients of NSF CAREER funding.

“Mike’s research is at the cutting-edge of unraveling the mysteries of the microbiome,” Wallenstein said. “He uses sophisticated tools and computational approaches to reveal how these complex communities of micro-organisms function in soils and even in the subsurface of the earth. While the presence of microorganisms in the subsurface has long been recognized, the metabolisms that support life in this habitat are at the frontier of our knowledge. His discovery of an entirely new metabolic pathway sheds light on how microbes survive in this desolate environment.”

###

Media Contact
Anne Manning
[email protected]

Original Source

https://agsci.source.colostate.edu/understanding-microbial-communities-in-fractured-shales-goal-of-nsf-sponsored-project/

Tags: Earth ScienceEnergy SourcesGeology/SoilMicrobiologyMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Smoking cannabis significantly impairs vision, study finds

April 13, 2021
IMAGE

Giant electronic conductivity change driven by artificial switch of crystal dimensionality

April 13, 2021

Researchers discover new way to monitor & prevent nerve cell deterioration after TBI

April 13, 2021

Study warns of ‘oxygen false positives’ in search for signs of life on other planets

April 13, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeBiologyEcology/EnvironmentMaterialsChemistry/Physics/Materials SciencesGeneticsInfectious/Emerging DiseasesTechnology/Engineering/Computer SciencePublic HealthcancerMedicine/HealthCell Biology

Recent Posts

  • Dueling evolutionary forces drive rapid evolution of salamander coloration
  • Cascading effects of noise on plants persist over long periods and after noise is removed
  • Chemical modification of RNA could play key role in polycystic kidney disease
  • World’s protected areas need more than a ‘do not disturb’ sign
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In