• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Understanding microbial communities in fractured shales goal of NSF-sponsored project

Bioengineer by Bioengineer
April 4, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Taking a deep dive into metabolic pathways introduced underground

IMAGE

Credit: Mike Wilkins/Colorado State University

Many invisible microbes like bacteria, fungi and archaea find a way to thrive in even the harshest conditions, including crevices of hydraulically fractured shales a mile or more underground.

Colorado State University researcher Mike Wilkins is taking a deep dive into the communities of microbes that are introduced underground during the hydraulic fracturing process. His goal is to understand how these microbes drive larger ecosystem functions, both in the Earth’s subsurface as well as other contexts.

Wilkins, assistant professor in the Department of Soil and Crop Sciences and a member of the CSU Microbiome Network, has received a five-year, $550,000 grant from the National Science Foundation to study how particular metabolic pathways within fractured shales, mediated by microbes, affect biogeochemical processes like carbon and nitrogen cycling and the generation of methane.

“I have always been interested in how different factors, such as the chemistry and physical structure of a system, all interact,” said Wilkins, who joined the CSU faculty in 2018. “In this work, we are using quite a unique system: deep fractured shales.”

The grant was awarded through the Faculty Early Career Development Program, which provides research support for outstanding early-career faculty.

Wilkins has studied the microbes that populate fractured shales in prior research he conducted at Ohio State University. He and colleagues previously identified a methylamine-cycling network that appears necessary to support microbial life in those deep, dark crevices, where life somehow persists.

Methylamine is a metabolite that some microbes use as a substrate to make methane, which is composed of carbon and hydrogen and is a greenhouse gas. With the CAREER award, Wilkins will sample shale plays across the Western U.S. to interrogate how carbon and nitrogen are cycled within those environments, and to show more clearly how the methylamine metabolism is critical for the persistence of life in the subsurface.

Studying microbes in shales will give Wilkins’ team insight into fundamental processes that occur in many other, more complex ecosystems.

Wetland ecosystems, for example, have the same methylamine-cycling networks that fractured shales do, but those networks are surrounded by hundreds or thousands of microbial species. In shales, the same processes are mediated by only five or six groups of microbes, so scientists like Wilkins can more easily tease apart which microbes are doing what. Methylamine metabolisms are also present in mammalian gut environments.

“The communities in these shales are actually quite simple, as only certain bugs can live in those conditions,” he said. “So we use techniques to reconstruct their genomes and isolate them in the lab, and it becomes this really tractable system for studying basic ecological processes.”

A comprehensive understanding of how methylamines fuel methanogenesis may also provide new resolution for signatures of life – perhaps yet undiscovered – in subsurface ecosystems, according to Wilkins’ proposal.

The NSF-funded project will include the development of a Front Range-based consortium of microbial scientists working in subsurface systems, with the goal of knowledge sharing and collaboration.

Assistant professor in soil and crop sciences Kelly Wrighton, and department chair Matt Wallenstein, are also recipients of NSF CAREER funding.

“Mike’s research is at the cutting-edge of unraveling the mysteries of the microbiome,” Wallenstein said. “He uses sophisticated tools and computational approaches to reveal how these complex communities of micro-organisms function in soils and even in the subsurface of the earth. While the presence of microorganisms in the subsurface has long been recognized, the metabolisms that support life in this habitat are at the frontier of our knowledge. His discovery of an entirely new metabolic pathway sheds light on how microbes survive in this desolate environment.”

###

Media Contact
Anne Manning
[email protected]

Original Source

https://agsci.source.colostate.edu/understanding-microbial-communities-in-fractured-shales-goal-of-nsf-sponsored-project/

Tags: Earth ScienceEnergy SourcesGeology/SoilMicrobiologyMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Enhancing Interfacial Electric Fields in Chloride Solid Electrolytes with BaTiO3 Nanoparticles for 4.8V All-Solid-State Lithium Batteries

November 10, 2025
Tiny Fish-Inspired Robots Collaborate to Target Multi-Point 3D Lesions for Precise Drug Delivery

Tiny Fish-Inspired Robots Collaborate to Target Multi-Point 3D Lesions for Precise Drug Delivery

November 10, 2025

Scientists Achieve On-Demand Reversible Switching Between Dynamic Covalent and Thermosetting Polymers

November 10, 2025

How Plastics Bond with Metals at the Atomic Level

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fault-Tolerant Neutral Atoms Boost Quantum Computing

Immediate Nirmatrelvir-Ritonavir Boosts Post-COVID Recovery Benefits

Key Genes Differ in X- and Y-Sperm of Bos indicus

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.