• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Understanding learning by inference

Bioengineer by Bioengineer
June 16, 2022
in Biology
Reading Time: 4 mins read
0
Testing learning by inference in a structured system
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Both humans and other animals are good at learning by inference, using information we do have to figure out things we cannot observe directly. New research from the Center for Mind and Brain at the University of California, Davis, shows how our brains achieve this by constructing cognitive maps. 

Testing learning by inference in a structured system

Credit: Phillip Witkowski, UC Davis

Both humans and other animals are good at learning by inference, using information we do have to figure out things we cannot observe directly. New research from the Center for Mind and Brain at the University of California, Davis, shows how our brains achieve this by constructing cognitive maps. 

“The work suggests a new framework for learning in structured environments that goes beyond incremental, experiential learning of associations,” said Erie Boorman, assistant professor in the UC Davis Department of Psychology and Center for Mind and Brain and senior author on the paper. 

In structured environments, individual elements are systematically related to each other as they often are in the real world. The study’s insights could be harnessed to improve educational strategies that promote the use of a cognitive map for accelerated learning through inferences, and potentially, approaches to hasten transfer of learning in machine learning in artificial intelligence, Boorman said. 

Learning by inference versus association 

Most studies of learning have focused on learning by association — how animals learn to associate one thing with another, through trial and error. The difference between what was expected and what actually happened drives learning in such cases. 

When there is a hidden structure behind those associations, you can use direct observations to infer indirect, unseen outcomes, leaping ahead of the chain of direct association. 

For example, knowing that the quality of seasonal foods is governed by changes in weather allows you to infer which are best to eat based on which foods are ripe during the same season, Boorman said. Observing ripe apples allows us to infer that pears should also be ripe, but not strawberries. This sort of structure is important to know when making decisions.     

Another example is an investor inferring that the drop in Facebook shares can be attributed to a tech bubble, suggesting that Microsoft shares will likely drop soon, too.       

“Knowing this hidden relationship means you can learn a lot faster,” Boorman said. 

Testing learning in a structured system

To investigate how humans can use a cognitive map to learn information, graduate student Phillip Witkowski, project scientist Seongmin Park and Boorman created a task. In a series of trials, volunteers were asked to choose between two of four abstract shapes that would lead to either of two different gift cards (e.g., either Starbucks or iTunes). The volunteers made their choices based on two pieces of information: their estimate of the probability that each shape would lead to a particular gift card, and a randomly assigned payout for each gift card. 

The shapes were divided into two pairs. In each pair, the probability that a shape would lead to a particular outcome was the inverse of the other shape. For example, if there was a 70% chance that shape A would lead to outcome 1, there was a 30% chance that shape B would lead to the same outcome, and vice versa for outcome 2. So the subjects could gain information about the likelihood of one outcome by inference from the other, like Microsoft shares from Facebook shares. The pairs of shapes were not connected, so the subjects could not learn anything about the results of choosing shapes C or D from the outcomes of choosing A or B. 

The researchers followed how the subjects learned about the system by observing their progress over a series of trials. After analyzing the results, they found that the volunteers were using inferential learning to make decisions about which shapes to pick. 

Some of the volunteers were invited back for the second part of the experiment, performing the same task while their brain activity was measured with functional magnetic resonance imaging. Learning is reflected in the brain by a burst of activity, a “belief update” when there is a difference between your prior and newly acquired knowledge. Activity linked to inferential learning was found in the prefrontal cortex and the area of midbrain where the neurotransmitter dopamine is released. 

At the same time, the researchers found a representation of the hidden (or latent) probability controlling associations for A and B in the prefrontal cortex. 

The fMRI results show the brain representing different outcomes in relation to each other, Boorman said. This representation allows for those “aha” moments. 

Conventional thinking holds that incremental learning about rewards from direct experiences is reinforced by the release of dopamine in the brain. The new study also implicates dopamine but for inferential learning. 

“Our work suggests a more general role for dopamine signals in updating beliefs through inference,” Boorman said.



Journal

Neuron

DOI

10.1016/j.neuron.2022.05.021

Method of Research

Experimental study

Subject of Research

People

Article Title

Neural mechanisms of credit assignment for inferred relationships in a structured world

Article Publication Date

16-Jun-2022

COI Statement

None declared.

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.