• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Understanding ceramic materials’ ‘mortar’ may reveal ways to improve them

Bioengineer by Bioengineer
May 25, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Images courtesy Hongliang Zhang

MADISON — When most people think of ceramics, they might envision their favorite mug or a flowerpot. But modern technology is full of advanced ceramics, from silicon solar panels to ceramic superconductors and biomedical implants.

Many of those advanced polycrystalline ceramics are combinations of crystalline grains which, at the microscopic level, resemble a stone fence held together with limestone mortar. Like that fence, the strength of the ceramic is determined by the strength of the mortar–which in ceramics is the grain boundary, or the areas where the different grains meet.

Previously, most researchers believed the chemistry of these grain boundaries in ceramics was very stable. But a new study by materials science engineers at the University of Wisconsin-Madison shows that’s not the case. In fact, in the important ceramic material silicon carbide, carbon atoms collect at those grain boundaries when the material is exposed to radiation. The finding could help engineers better understand the properties of ceramics and could aid in fine-tuning a new generation of ceramic materials.

The details of the study appear today in the journal Nature Materials.

Since the 1970s, researchers have been aware of similar radiation-induced segregation in metal alloys. Because metal atoms share electrons freely, they are able to mix and unmix easily. When they are bombarded by ion radiation, some of the atoms in the metals will pop out of place and move toward the grain boundaries, and if different types of atoms move at different rates, the chemistry of the alloy can be altered.

Atoms in ceramics are very selective about which neighbors they bond with and the bonds are much stronger than in metals. That’s why researchers believed these atoms weren’t subject to the same type of segregation. But when Izabela Szlufarska, a professor of materials science and engineering at UW-Madison, began looking closely at the grain boundaries of silicon carbide, that’s not what she found.

“In silicon carbide, the silicon and carbon really want to be paired together; they want to be 50 percent carbon and 50 percent silicon,” she says.

However, when her team ran simulations and also imaged the grain boundaries, the carbon concentration was only 45 percent at the boundaries. “The chemistry was just really off,” she says. “That was the first surprise, since this material really wants to have ordered atoms.”

This suggested that silicon carbide might also be susceptible to radiation-induced segregation. So Szlufarska and her team bombarded the substance with ion radiation, finding that between 300 degrees Celsius and 600 degrees Celsius, the grain boundaries experienced carbon enrichment.

At those energy levels, the radiation causes some carbon atoms to pop out of place, creating a pair of defects in the silicon carbide including an empty spot called a vacancy and a loose carbon atom called an interstitial. Those unattached interstitial atoms migrate to the grain boundaries where they accumulate, affecting the material’s chemistry.

Besides the fact that researchers simply didn’t believe this type of segregation could take place in ceramics, Szlufarska says that, until recently, they also lacked the tools to even investigate the phenomenon. After painstaking fabrication and preparation of the silicon carbide bi-crystals, state-of-the-art scanning transmission electron microscopy conducted at UW-Madison and Oak Ridge National Laboratory allowed the team to resolve the chemical composition along the grain boundaries.

The team believes the phenomenon is likely to occur in other polycrystalline ceramics as well. The process is a double-edged sword: On the one hand, radiation-induced segregation means ceramics are subject to the same types of damage and deterioration at their grain boundaries as metal alloys, though at different temperatures. On the other hand, the segregation could be useful in materials engineering to produce specialized versions of ceramics like silicon carbide, which is used in nuclear energy, jet engines and other high-tech applications.

“Maybe the radiation can be used as a tool to fine tune grain boundary chemistry,” says Xing Wang, study co-author and a professor at Pennsylvania State University who worked on the research while earning his doctorate at UW-Madison. “That could be useful to us in the future.”

###

This research was supported by grants from the U.S. Department of Energy (DE-FG02-08ER46493) and National Science Foundation (DMR-1720415).

— Jason Daley, [email protected]

Media Contact
Izabela Szlufarska
[email protected]

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

AI Advances Enhance Sustainable Recycling of Livestock Waste

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025
Crafting Yogurt Using Ants: A Scientific Innovation

Crafting Yogurt Using Ants: A Scientific Innovation

October 3, 2025

Pd-Catalyzed Synthesis of E/Z Trisubstituted Cycloalkenes

October 3, 2025

Hanbat National University Researchers Develop Innovative Method to Enhance Solid Oxide Fuel Cell Efficiency

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

Transforming Palm Waste into High-Performance COâ‚‚ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.