• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

'Unclonable' tag combats counterfeiters

Bioengineer by Bioengineer
February 6, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Discovering that your new designer handbag or gold watch is a fake is costly and annoying, and counterfeit medical devices or drugs could have even more serious consequences. But seemingly as soon as manufacturers develop a new method to ensure product authenticity, counterfeiters find a way to outsmart it. Now, researchers have created an “unclonable” tag that can never be replicated, even by the manufacturer. They report their results in ACS Applied Materials & Interfaces.

Each year, counterfeit goods cost billions of dollars in economic losses. These knock-offs, typically of inferior quality, often masquerade as luxury brands. Manufacturers have tried to incorporate unique tags or bar codes on their products so that store owners and consumers can verify a product’s authenticity, but counterfeiters often figure out how to copy these. Riikka Arppe-Tabbara, Mohammad Tabbara and Thomas Just Sørensen wanted to develop an authentication system using physical unclonable functions (PUFs) — tags based on random processes that are impossible to replicate. As they explain in their report, an example of a PUF would be throwing a handful of sand on a surface. Each throw generates a random pattern that cannot be copied.

To develop their anti-counterfeiting system, the researchers laser-printed QR codes on paper and then sprayed the PUF pattern on the surface. The PUF inks contained microparticles, which formed random patterns that showed up as white spots on a black background when magnified. To validate their system, the team generated 10,000 tags and imaged them with a smart phone camera to establish a registry. Then, they re-imaged the tags with different smart phone readers and tried to match them to the registry. The system correctly identified 76 percent of the PUF tags. None of the tags were identified incorrectly, but some codes that were dirty or out-of-focus required an additional scan. The researchers estimate that the system can generate 2.5 × 10120 unique codes.

###

The authors acknowledge funding from the Villum Fonden and the University of Copenhagen Proof-of-Concept Programme.

The abstract that accompanies this study is available here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455

Tags: AnthropologyBioinformaticsBiotechnologyChemistry/Physics/Materials SciencesInformation Management/Tracking SystemsPersonalTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Discovering ZmATG18 Genes’ Role in Maize Drought Resilience

Discovering ZmATG18 Genes’ Role in Maize Drought Resilience

August 26, 2025
UCLA Researchers Chart Primate Ovarian Reserve Development, Unlocking Vital Insights into Women’s Health

UCLA Researchers Chart Primate Ovarian Reserve Development, Unlocking Vital Insights into Women’s Health

August 26, 2025

Brain and Gill Kynurenine Pathway Regulation in Shrimp

August 26, 2025

Resistant Starch Boosts Gut Health in Ready Meals

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preeclampsia Alters Ferroptosis Markers in Placenta

Quantifying Age-Related Thymic Changes via Chest CT

N-Doped Carbon Coated SnP2O7 Enhances Lithium-Ion Anodes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.