• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, August 20, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UNC-Chapel Hill researchers use light to launch drugs from red blood cells

Bioengineer by Bioengineer
January 4, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the University of North Carolina at Chapel Hill have developed a breakthrough technique that uses light to activate a drug stored in circulating red blood cells so that it is released exactly when and where it is needed.

The work, led by Fred Eshelman Distinguished Professor David Lawrence in the Eshelman School of Pharmacy, has profound implications for the field of drug delivery by using red blood cells to carry drugs and then using light to release them in precise locations. The technique, which overcomes a decades-long scientific hurdle, could drastically reduce the amount of a drug needed to treat disease and thus side effects.

"Using light to treat a disease site has a lot of benefits beyond the isn't-that-cool factor," said Lawrence, whose work is published in the journal Angewandte Chemie. "Those benefits could include avoiding surgery and the risk of infection, making anesthesia unnecessary and allowing people to treat themselves by shining a light on a problem area, such as an arthritic knee."

Lawrence and his team attached a drug molecule to vitamin B12 and loaded the compound into red blood cells, which can circulate for up to four months, providing a long-lasting reservoir of medicine that can be tapped as needed. They then demonstrated their ability to overcome a longtime technical hurdle: using long-wavelength light to penetrate deep enough into the body to break molecular bonds; in this case, the drug linked to vitamin B12.

Here's the rub: Long-wavelength light can penetrate much more deeply into the body, but it doesn't carry as much energy as short wavelength light, and cannot typically break molecular bonds. To activate the drug with long-wavelength light, Lawrence and his team had to figure out how to do it in a way that required less energy.

"That's the trick, and that's where we've been successful," said Lawrence.

Lawrence's team solved the energy problem by introducing a weak energy bond between vitamin B12 and the drug and then attached a fluorescent molecule to the bond. The fluorescent molecule acts as an antenna, capturing long wavelength light and using it to cut the bond between the drug and the vitamin carrier.

Lawrence pointed to some complex and deadly cancers where physicians might have a better chance of helping the patient if a wide array of anti-cancer agents could be used.

"The problem is when you start using four or five very toxic drugs you're going to have intolerable side effects," he said. "However, by focusing powerful drugs at a specific site, it may be possible to significantly reduce or eliminate the side effects that commonly accompany cancer chemotherapy."

Lawrence has also created a company in partnership with UNC, Iris BioMed, to further develop the technology to be used in humans. Lawrence is a member of the UNC Lineberger Comprehensive Cancer Center and professor in the College of Arts and Sciences and School of Medicine.

###

Media Contact

Thania Benios
[email protected]
917-930-5988
@unc

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

How to regenerate mouse hearts

Harnessing the heart regeneration ability of marsupials

August 20, 2022
UTSW Clinical trial sets stage for new paradigm in kidney cancer treatment

UTSW Clinical trial sets stage for new paradigm in kidney cancer treatment

August 19, 2022

Study: New model for predicting belief change

August 19, 2022

Rice, NASA extend Space Act Agreement

August 19, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    57 shares
    Share 23 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Chi-Huey Wong awarded Tetrahedron Prize for Creativity in Organic Synthesis

    38 shares
    Share 15 Tweet 10
  • Dogs lying in the middle of the road after sunrise at Kewa Pueblo, in no hurry to start the day

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryVaccinesUrbanizationUniversity of WashingtonZoology/Veterinary ScienceVehiclesViolence/CriminalsWeather/StormsVirologyVirusVaccineUrogenital System

Recent Posts

  • Harnessing the heart regeneration ability of marsupials
  • UTSW Clinical trial sets stage for new paradigm in kidney cancer treatment
  • Study: New model for predicting belief change
  • Rice, NASA extend Space Act Agreement
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In