• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UMN researcher identifies differences in genes that impact response to cryptococcus infection

Bioengineer by Bioengineer
July 16, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MINNEAPOLIS, MN- July 15, 2019 – Cryptococcus neoformans is a fungal pathogen that infects people with weakened immune systems, particularly those with advanced HIV/AIDS. New University of Minnesota Medical Research could mean a better understanding of this infection and potentially better treatments for patients.

In “Identification of Pathogen Genomic Differences That Impact Human Immune Response and Disease during Cryptococcus neoformans Infection” published in the journal MBio by American Society for Microbiology, Kirsten Nielsen, PhD, Professor, Department of Microbiology and Immunology, University of Minnesota, Medical School and colleagues were the first to examine how Cryptococcus genes impact the disease using human data.

After her last study, which found that the pathogen was driving the outcome of the Cryptococcus infection, Nielsen went on to examine the underlying genetic differences in her current study.

“We looked at differences in disease between patients – whether the patient lived or died, how the patient’s immune system responded to the infection, and whether the antifungal drug treatment worked well – and we asked ‘How do genetic differences in the Cryptococcus strains impact the disease variables?'” explained Nielsen.

The study found that there are 40 genes that are crucial to the ability of Cryptococcus to change the outcome of human disease, which have never before been identified as important. These genes give researchers a new set of information that they’ve never had before.

“We can take this new information generated using the human data and show how the genes work in other models,” said Nielsen. “When we deleted the genes, it changed the ability of Cryptococcus to cause disease in a model system, so we know that they are important in disease.”

Nielsen and her colleagues hope that identifying which versions of genes are important for patient survival will ultimately lead to better treatment of patients.

“We hope that this will have clinical benefits in the future. If we can figure out why certain strains are more deadly, and identify which patients have those strains, we can treat them differently. This will hopefully decrease reliance on toxic antifungals,” said Katrina Jackson, a Graduate Student in the University of Minnesota Medical School, who was involved in the project.

###

About the University of Minnesota Medical School

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

Media Contact
Krystle Barbour
[email protected]

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Athletes’ Health Perceptions Don’t Always Match Body Satisfaction, ECU Study Reveals

November 11, 2025

Infralesional Lipidome Changes in Ob/Ob Kidney Tubules

November 11, 2025

Sylvester Researchers Deliver Over 35 Oral Presentations at ASH 2025 Annual Meeting

November 11, 2025

Ginsenoside Rh2: A Novel PIN1 Inhibitor Against Cancer Stem Cells

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Social Capital’s Impact on Regenerative Agriculture

Review Retracted: Amino Acids in Plant Science

Unraveling Wheat Resistance Mechanisms to Fusarium Crown Rot

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.