• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UMD partners with industry to improve rainbow trout filet production via genomic selection

Bioengineer by Bioengineer
February 23, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research represents the only work of its kind in rainbow trout, a $100 million industry in the U.S. alone

IMAGE

Credit: Public domain

Global development and population growth has led to an increased demand for seafood around the world, but along with that demand comes a need for improved production. To meet this need in one of the most popular fish in the U.S., the University of Maryland (UMD) was recently awarded a grant from the United States Department of Agriculture National Institute of Food and Agriculture (USDA-NIFA) to explore genomic selection as a method of increasing fillet quality and yield in rainbow trout. Rainbow trout represents a $100 million industry in fish sales alone. This is separate from the significant recreational appeal of the fish, with trout fishing attracting about 8 million anglers throughout the year. But while genomic selection has been widely adopted in livestock programs as a way to increase yield, it is yet to be adopted in aquaculture. With this grant, UMD and collaborators across academia and industry are taking the lead in showcasing the benefits of genomic selection in rainbow trout and beyond.

“The overarching goal of this work in rainbow trout is to use the most current technologies in novel ways for aquaculture to help solve a fundamental problem for the industry,” says Mohamed Salem, associate professor in Animal & Avian Sciences with UMD and the lead on this work. “Using genomic technologies and genetic markers, we can help identify the genes that are important for how feed transitions into filet in the fish. When you grow a fish, some fish will put more of the feed energy you give them into filet, and some will deposit more into visceral fat, which is a complete waste. So identifying the genetic markers that are associated with this conversion process will help improve feed efficiency.”

As Salem explains, muscle fillet is the most valuable product for rainbow trout, so anything to improve the quality and quantity of filet on a fish will improve production efficiency. While classical breeding can improve yield over time, it is a slow and time-consuming process. Genomic selection provides breeders with the additional information needed to increase the accuracy of precision breeding and improve the overall genetic quality of their breeding stock much more rapidly.

In order to achieve this goal, Salem is partnering with USDA, University of Georgia, University of Idaho, Middle Tennessee State University, and Pacific Aquaculture. Pacific Aquaculture is an industry partner that grows rainbow trout in Washington and Idaho, and they hope to find a solution to a common industry problem known as downgrading that costs them tens of thousands per week.

“Downgrading is related to cracks in a filet that don’t look good for customers, so they downgrade the product to nuggets or for other uses and are unable to sell the filets at the normal price in the consumer market,” explains Salem. “Downgrading occurs in about 15% of filet products, and this goes beyond trout. Atlantic salmon, with a market value of $18 billion worldwide, also has a similar problem. But very few researchers are examining this issue, and no one is looking at it in rainbow trout.”

The reason why these cracks in the filet form are unknown, but this work will help determine the genetic reasons behind the problem while examining genetic markers that connect to filet quality. By partnering within academia and industry, the work has the potential to make a real impact across aquaculture.

“Rainbow trout is a fish that the U.S. is responsible for spreading, but now ironically we are not even the number one producers globally,” says Salem. “But it is an important commodity for us, and we love to catch it recreationally and enjoy it as a healthy source of protein. Working directly with industry, we are able to solve problems, share our knowledge directly with producers to help improve their businesses, and still contribute to new and novel science.”

This work is funded by the United States Department of Agriculture National Institute of Food and Agriculture (USDA-NIFA) Award #2021-67015-33388.

###

Media Contact
Samantha Watters
[email protected]

Original Source

https://agnr.umd.edu/news/umd-associate-professor-partners-aquaculture-industry-improve-filet-quality-and-yield-rainbow

Tags: AgricultureBiologyFisheries/AquacultureGeneticsMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Cancer Cells Evade Anti-Cancer Drugs by Hiding and Thriving Within Bone Marrow Fibroblasts

Cancer Cells Evade Anti-Cancer Drugs by Hiding and Thriving Within Bone Marrow Fibroblasts

August 12, 2025
blank

Revolutionary Research Unveils “Pore Science and Engineering” Paving the Way for Next-Generation Porous Materials

August 12, 2025

KAIST Unveils Revolutionary Wireless OLED Contact Lens for Retinal Diagnostics

August 12, 2025

BU Researchers Receive $2.1 Million Grant to Advance Training in Biomolecular Pharmacology

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cancer Cells Evade Anti-Cancer Drugs by Hiding and Thriving Within Bone Marrow Fibroblasts

Revolutionary Research Unveils “Pore Science and Engineering” Paving the Way for Next-Generation Porous Materials

KAIST Unveils Revolutionary Wireless OLED Contact Lens for Retinal Diagnostics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.