• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UMBC researchers identify where giant jets from black holes discharge their energy

Bioengineer by Bioengineer
December 15, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New study determines that black holes discharge the energy in their plasma jets much farther away from the black hole’s center than previously thought, resolving long-standing debate and offering clues to jet formation and structure

IMAGE

Credit: NASA

The supermassive black holes at the centers of galaxies are the most massive objects in the universe. They range from about 1 million to upwards of 10 billion times the mass of the Sun. Some of these black holes also blast out gigantic, super-heated jets of plasma at nearly the speed of light. The primary way that the jets discharge this powerful motion energy is by converting it into extremely high-energy gamma rays. However, UMBC physics Ph.D. candidate Adam Leah Harvey says, “How exactly this radiation is created is an open question.”

The jet has to discharge its energy somewhere, and previous work doesn’t agree where. The prime candidates are two regions made of gas and light that encircle black holes, called the broad-line region and the molecular torus.

A black hole’s jet has the potential to convert visible and infrared light in either region to high-energy gamma rays by giving away some of its energy. Harvey’s new NASA-funded research sheds light on this controversy by offering strong evidence that the jets mostly release energy in the molecular torus, and not in the broad-line region. The study was published in Nature Communications and co-authored by UMBC physicists Markos Georganopoulos and Eileen Meyer.

Far out

The broad-line region is closer to the center of a black hole, at a distance of about 0.3 light-years. The molecular torus is much farther out–more than 3 light-years. While all of these distances seem huge to a non-astronomer, the new work “tells us that we’re getting energy dissipation far away from the black hole at the relevant scales,” Harvey explains.

“The implications are extremely important for our understanding of jets launched by black holes,” Harvey says. Which region primarily absorbs the jet’s energy offers clues to how the jets initially form, pick up speed, and become column-shaped. For example, “It indicates that the jet is not accelerated enough at smaller scales to start to dissipate energy,” Harvey says.

Other researchers have proposed contradictory ideas about the jets’ structure and behavior. Because of the trusted methods Harvey used in their new work, however, they expect the results to be broadly accepted in the scientific community. “The results basically help to constrain those possibilities–those different models–of jet formation.”

On solid footing

To come to their conclusions, Harvey applied a standard statistical technique called “bootstrapping” to data from 62 observations of black hole jets. “A lot of what came before this paper has been very model-dependent. Other papers have made a lot of very specific assumptions, whereas our method is extremely general,” Harvey explains. “There isn’t much to undermine the analysis. It’s well-understood methods, and just using observational data. So the result should be correct.”

A quantity called the seed factor was central to the analysis. The seed factor indicates where the light waves that the jet converts to gamma rays come from. If the conversion happens at the molecular torus, one seed factor is expected. If it happens at the broad-line region, the seed factor will be different.

Georganopolous, associate professor of physics and one of Harvey’s advisors, originally developed the seed factor concept, but “applying the idea of the seed factor had to wait for someone with a lot of perseverance, and this someone was Adam Leah,” Georganopolous says.

Harvey calculated the seed factors for all 62 observations. They found that the seed factors fell in a normal distribution aligned almost perfectly around the expected value for the molecular torus. That result strongly suggests that the energy from the jet is discharging into light waves in the molecular torus, and not in the broad-line region.

Tangents and searches

Harvey shares that the support of their mentors, Georganopoulos and Meyer, assistant professor of physics, was instrumental to the project’s success. “I think that without them letting me go off on a lot of tangents and searches of how to do things, this would have never gotten to the level that it’s at,” Harvey says. “Because they allowed me to really dig into it, I was able to pull out a lot more from this project.”

Harvey identifies as an “observational astronomer,” but adds, “I’m really more of a data scientist and a statistician than I am a physicist.” And the statistics has been the most exciting part of this work, they say.

“I just think it’s really cool that I was able to figure out methods to create such a strong study of such a weird system that is so removed from my own personal reality.” Harvey says. “It’s going to be fun to see what people do with it.”

###

Please bold subheadings:
Far out
On solid footing
Tangents and searches

Please hyperlink in graf 2, “published in Nature Communications”:

Media Contact
Sarah Hansen
[email protected]

Original Source

https://news.umbc.edu/umbc-researchers-identify-where-giant-jets-from-black-holes-discharge-their-energy/

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19296-6

Tags: AstronomyAstrophysicsMathematics/StatisticsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Hurricane Helene on Groundwater Chemistry: A Scientific Analysis

Impact of Hurricane Helene on Groundwater Chemistry: A Scientific Analysis

October 28, 2025
blank

Could Neutrinos Unlock the Mysteries of Our Existence?

October 28, 2025

Introducing the World’s First Online Course on Carbon Dioxide Removal: A Breakthrough for Climate Science Education

October 28, 2025

Nanographene Morphs: Oxidation Bends Molecules, Alters Properties!

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Factors Influencing Preterm Birth in Low-Resource Areas

Enhanced Knock-In Boosts Biomolecular Condensate Analysis

Building an Afrocentric AI Platform for Renewal

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.