• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UMass Amherst research compares sensitivity of all genes to chemical exposure

Bioengineer by Bioengineer
October 29, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using an unbiased approach, scientists for the first time analyzed more than ½-million chemical-gene interactions

IMAGE

Credit: UMass Amherst

A University of Massachusetts Amherst environmental health scientist has used an unprecedented objective approach to identify which molecular mechanisms in mammals are the most sensitive to chemical exposures.

The study, published in the journal Chemosphere, advances the understanding of the interaction of chemicals, both pollutants and pharmaceuticals, on gene expression and the impact on human health.

“When we identified all the sensitive genes, we were very much surprised that almost every well-known molecular pathway is sensitive to chemicals to a certain degree,” says lead author Alexander Suvorov, associate professor in the School of Public Health and Health Sciences.

The study identified genes and molecular pathways most sensitive to chemical exposures, including mechanisms involving aging, lipid metabolism and autoimmune disease. “These findings for the first time prove that current epidemics in metabolic and autoimmune disorders may be partly due to a very broad range of chemical exposures,” Suvorov says.

To carry out their analysis, Suvorov and five students – undergraduates Victoria Salemme, Joseph McGaunn and Menna Teffera, and graduate students Anthony Poluyanoff and Saira Amir – extracted data on chemical-gene interactions from the Comparative Toxicogenomics Database, which includes human, rat and mouse genes.

The UMass Amherst team created a database of 591,084 chemical-gene interactions reported in 2,169 studies that used high-throughput gene expression analysis, which means they looked at multiple genes. Low-throughout analysis focuses only on a single gene.

“In the recent past, everything that we knew about molecular mechanisms affected by chemicals was coming from low-throughput experiments,” Suvorov says, which led toxicology researchers to focus on those already identified genes, rather than looking for chemical sensitivity among a fuller range of genes.

“I wanted to find some approach that would tell us in a completely unbiased way which mechanisms are sensitive and which are not. I wondered if we were missing a significant toxic response just because no one ever looked for it,” Suvorov says. “By overlaying many high-throughput studies, we can see changes in the expression of all genes all at once. And that is unbiased because we are not cherry-picking any particular molecular mechanisms.”

The interactions analyzed encompassed 17,338 unique genes and 1,239 unique chemicals. The researchers split their database of chemicals into two parts – pharmaceutical chemicals, which are designed to target known molecular cascades; and other chemicals such as industrial, agricultural, cosmetics and pollutants. When the sensitivity of genes to pharmaceutical chemicals was compared to the sensitivity of genes to the other chemicals, the results were the same. “That proves that when analysis is done on really big numbers of chemicals, their composition does not matter,” Suvorov says.

The study confirmed the molecular mechanisms that were previously recognized as being sensitive to chemical exposure, such as oxidative stress. The study’s new findings that the pathways involving aging, lipid metabolism and autoimmune disease are also highly sensitive suggest that chemical exposures may have a role in such conditions as diabetes, fatty liver disease, lupus and rheumatoid arthritis, among others.

“This study represents a significant step forward in the use of genomic data for the improvement of public health policies and decisions,” Suvorov says, “and the public health field will benefit from a future focus of toxicological research on these identified sensitive mechanisms.”

###

Media Contact
Patty Shillington
[email protected]

Original Source

https://www.umass.edu/newsoffice/article/umass-amherst-research-compares

Related Journal Article

http://dx.doi.org/10.1016/j.chemosphere.2020.128362

Tags: BiologyEnvironmental HealthEpidemiologyGeneticsMathematics/StatisticsMedicine/HealthMolecular BiologyPublic HealthToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

Celebrating 5 Years of the Early Career Geriatricians Initiative

August 26, 2025

Sex-Specific Genetic Links to Major Depression Revealed

August 26, 2025

Very Low Birth Weight Impacts Japanese Children’s Visual Perception

August 26, 2025

Pennington Biomedical Launches Cutting-Edge Endocrinology and Diabetes Clinic

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Celebrating 5 Years of the Early Career Geriatricians Initiative

Scalable Synthesis Unlocks Saxitoxin and Analogs

Sex-Specific Genetic Links to Major Depression Revealed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.