• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Ultrasound helmet would make live images, brain-machine interface possible

Bioengineer by Bioengineer
May 8, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Daniel Dubois/Vanderbilt University

Ultrasound technology for the brain could mean real-time images during surgery, a better idea of which areas get stimulated by certain feelings or actions and, ultimately, an effective way for people to control software and robotics by thinking about it.

Medical doctors and scientists have spent decades hoping for such an advance, but it was impossible before now, said Brett Byram, assistant professor of biomedical engineering. Ultrasound beams bounced around inside the skull, so no useful imagery could make it out.

Byram plans to use machine learning that will gradually be able to account for distortion and deliver workable images. What's more, he wants to integrate electroencephalogram technology so doctors could see not only brain perfusion – how blood flow correlates to changes in thought – but also areas of stimulation related to movement and emotion.

"The goal is to create a brain-machine interface using an ultrasound helmet and EEG," Byram said. "A lot of the technology we're using now wasn't available when people were working on this 20 or 30 years ago. Deep neural networks and machine learning have become popular, and our group is the first to show how you can use those for ultrasound beamforming."

The applications, he said, are endless. At the basic level, it could allow for images as clear or moreso than those doctors are accustomed to seeing of the heart or womb.

Going forward, a person with limited movement due to ALS could think about wanting a glass of water, and a robotic arm could retrieve one because the helmet detected blood flow and EEG information that told it to. A student reading a paper may feel stress about a certain part that isn't properly sourced, and the computer would know to put a mark there for later editing.

Byram, whose funding for this is from a $550,000 National Science Foundation Faculty Early Career Development grant, said he's working with Leon Bellan, assistant professor of mechanical engineering and biomedical engineering, and Michael Miga, Harvie Branscomb Professor and professor of biomedical engineering, radiology and neurological surgery, to develop the helmet. He plans to invite medical center doctors to the team as their work progresses.

###

Media Contact

Heidi Nieland Hall
[email protected]
615-322-6614
@vanderbiltu

http://news.vanderbilt.edu/research/

Original Source

https://news.vanderbilt.edu/2018/05/08/ultrasound-helmet-would-make-live-images-brain-machine-interface-possible/

Share12Tweet8Share2ShareShareShare2

Related Posts

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.