• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, February 3, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ultrasonic technique discloses the identity of graphite

Bioengineer by Bioengineer
May 21, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kaneka Corporation, Physical Review Materials (2020)

A group of scientists from Osaka University, in cooperation with Kaneka Corporation, evaluated the interplanar bond strength of graphene by measuring the elastic constant of graphite, demonstrating that the elastic constant of monocrystalline graphite (Figure 1, top) was above 45 gigapascal (GPa), which was higher than conventionally believed. Their research results were published in Physical Review Materials.

Graphite consists of layers of graphene and the layers are bonded via weak van der Waals (vdW) forces, a ubiquitous attraction between all molecules. It was believed that the elastic constant of graphite crystal did not exceed 40 GPa.

This is because the elastic constants obtained from experiments using artificial highly oriented pyrolytic graphite (HOPG) were low due to structural defects in the graphite (as exemplified in Figure 1, bottom) and theoretical calculations also demonstrated that the elastic constant of graphite was less than 39 GPa.

Since a direct characteristic of an interplanar interaction is the elastic constant along the c axis of graphite, which reflects the interlayer bond strength, the elastic constant of graphite has been used to validate proposed theoretical approaches, and its accurate measurement is critical to thoroughly understanding vdW interactions.

In this study, Kaneka Corporation created a high-quality defect-free monocrystalline graphite by heating high orientation polyimide thin films at high temperatures; however, it was very difficult to measure the elastic constant of this crystal (10 μm in diameter, 1μm in thickness) along the thickness direction.

Thus, in order to experimentally obtain the elastic constant of graphite, using picosecond laser ultrasound spectroscopy, this group applied a laser of 1μm in diameter to the surface of a multilayered graphene for one 10 trillionth of a second to generate ultra-high frequency ultrasound. By accurately measuring the longitudinal wave sound velocity along the thickness direction, they obtained the elastic constant.

Although it had been thought that the interplanar bond strength of graphite was very weak, the results of this study showed that it had a strong bond strength: the elastic constant was nearly 50 GPa, which cannot be explained by conventional theories.

In this study, the short-range correlation effect selectively strengthened the potential energy surface (PES). This anharmonic PES enhanced the elastic constant of graphite. Using the ACFDT-RPA+U method, they demonstrated that the elastic constant reached 50 GPa due to the short-range correlation effect.

Lead author KUSAKABE Koichi says, “Our research group shows that graphite exhibits its superiority in a highly crystalline state. We have created high-quality, high-crystallinity graphite, which has stronger interplanar bond strength than previously believed. Applying ultrasonic measurement techniques to this defect-free monocrystalline graphite thin film will lead to the production of highly sensitive sensors for identifying biological matter such as proteins in non-destructive testing.”

###

The article, “Interplanar stiffness in defect-free monocrystalline graphite,” was published in Physical Review Materials at DOI: https://doi.org/10.1103/PhysRevMaterials.4.043603.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

About Kaneka Corporation

Kaneka Corporation was established in 1949 as a spin-off from Kanegafuchi Spinning Co., Ltd. (at that time), taking over all businesses other than the textile division. While promoting a wide range of businesses such as caustic soda, yeast, and foods, we have also developed various businesses such as vinyl chloride resin, chemical products, functional resins, foamed resins, foods, life sciences, electronics, and synthetic fibers. From April 2017, we are accelerating the shift to a business model centered on providing solutions to social issues by creating new values through technological innovation. We will continue to contribute to the advancement of life and the environment of people worldwide through “chemistry”.

Website: https://www.kaneka.co.jp/en/

Media Contact
Saori Obayashi
[email protected]

Original Source

https://journals.aps.org/prmaterials/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevMaterials.4.043603

Tags: AcousticsChemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Shrinking Shellfish: FAU Study Reveals Acidic Water Threats in Indian River Lagoon

Shrinking Shellfish: FAU Study Reveals Acidic Water Threats in Indian River Lagoon

February 3, 2026
blank

Oxygen-Enhanced Graphene Filters Revolutionize Natural Gas Purification

February 3, 2026

Theoretical Insights into Cluster Radioactivity Under Intense Laser Fields

February 3, 2026

Breakthrough in Highly Selective Asymmetric 1,6-Addition of Aliphatic Grignard Reagents to Unsaturated Carbonyl Compounds

February 2, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    158 shares
    Share 63 Tweet 40
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ontogeny and Transcriptional Control of Thetis Cells

Prenatal Workshops Prepare Parents for NICU Experience

Anti-Interference Diffractive Networks for Multi-Object Recognition

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.