• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Ultrafast lasers reveal light-harvesting secrets of photosynthetic algae

Bioengineer by Bioengineer
December 16, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Desmond Toa

Photosynthetic algae have been refining their technique for capturing light for millions of years. As a result, these algae boast powerful light-harvesting systems — proteins that absorb light to be turned into energy — that scientists have long aspired to understand and mimic for renewable energy applications.

Now, researchers at Princeton University have revealed a mechanism that enhances the light harvesting rates of the cryptophyte algae Chroomonas mesostigmatica. Published in the journal Chem on December 8, these findings provide valuable insights for the design of artificial light-harvesting systems such as molecular sensors and solar energy collectors.

Cryptophyte algae often live below other organisms that absorb most of the sun's rays. In response, the algae have evolved to thrive on wavelengths of light that aren't captured by their neighbors above, mainly the yellow-green colors. The algae collects this yellow-green light energy and passes it through a network of molecules that converts it into red light, which chlorophyll molecules need to perform important photosynthetic chemistry.

The speed of the energy transfer through the system has both impressed and perplexed the scientists that study them. The Scholes lab's predictions were always about three times slower than the observed rates. "The timescales that the energy is moved through the protein — we could never understand why the process so fast," said corresponding author Gregory Scholes, the William S. Tod Professor of Chemistry at Princeton University.

In 2010, Scholes' team found evidence that the culprit behind these fast rates was a strange phenomenon called quantum coherence, in which molecules could share electronic excitation and transfer energy according to quantum mechanical probability laws instead of classical physics. But the research team couldn't explain exactly how coherence worked to speed up the rates until now.

Using a sophisticated method enabled by ultrafast lasers, the researchers were able to measure the molecules' light absorption and essentially track the energy flow through the system. Normally the absorption signals would overlap, making them impossible to assign to specific molecules within the protein complex, but the team was able to sharpen the signals by cooling the proteins down to very low temperatures, said Jacob Dean, lead author and postdoctoral researcher in the Scholes lab.

The researchers observed the system as energy was transferred from molecule to molecule, from high-energy green light to lower energy red light, with excess energy lost as vibrational energy. These experiments revealed a particular spectral pattern that was a 'smoking gun' for vibrational resonance, or vibrational matching, between the donor and acceptor molecules, Dean said.

This vibrational matching allowed energy to be transferred much faster than it otherwise would be by distributing the excitation between molecules. This effect provided a mechanism for the previously reported quantum coherence. Taking this redistribution into account, the researchers recalculated their prediction and landed on a rate that was about three times faster.

"Finally the prediction is in the right ballpark," Scholes said. "Turns out that it required this quite different, surprising mechanism."

The Scholes lab plans to study related proteins to investigate if this mechanism is operative in other photosynthetic organisms. Ultimately, scientists hope to create light-harvesting systems with perfect energy transfer by taking inspiration and design principles from these finely tuned yet extremely robust light-harvesting proteins. "This mechanism is one more powerful statement of the optimality of these proteins," Scholes said.

###

Read the full article here:

Dean, J. C.; Mirkovic, T.; Toa, Z. S. D.; Oblinsky, D. G.; Scholes, G. D. "Vibronic Enhancement of Algae Light Harvesting." Chem 2016, 1, 858.

This work was supported as part of the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by the Basic Energy Sciences program of the US Department of Energy Office of Science under award DE-SC0001035.

Media Contact

Tien Nguyen
[email protected]
609-258-6523
@Princeton

http://www.princeton.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

How the GlucoScreen prototype works

Prototype taps into the sensing capabilities of any smartphone to screen for prediabetes

March 30, 2023
New procedure helps patients avoid leg amputation

New procedure helps patients avoid leg amputation

March 30, 2023

New Intermountain, Stanford study finds excess harm from commonly overprescribed antibiotics for patients resulting in widespread side effects

March 30, 2023

New mechanisms and therapeutic possibilities for heart failure uncovered by scientists at the Lewis Katz School of Medicine at Temple University and Johns Hopkins University

March 30, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    67 shares
    Share 27 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Extinction of steam locomotives derails assumptions about biological evolution

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prototype taps into the sensing capabilities of any smartphone to screen for prediabetes

New procedure helps patients avoid leg amputation

New Intermountain, Stanford study finds excess harm from commonly overprescribed antibiotics for patients resulting in widespread side effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In