• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ultra ultrasound to transform new tech

Bioengineer by Bioengineer
January 16, 2019
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

IMAGE

Credit: University of Queensland


The new sensor – capable of detecting vibrations of living cells – may revolutionise everything from medical devices to unmanned vehicles.
World first experiments at the University of Queensland have combined modern nanofabrication and nanophotonics techniques to build the first ultraprecise ultrasound sensors on a silicon chip.

According to lead author Dr Sahar Basiri-Esfahani, a Sêr Cymru II Fellow at Swansea University, the impressive accuracy of the technology may change how we understand biology.

“We’ll soon have the ability to listen to the sound emitted by living bacteria and cells,” she said.

“This is a particularly attractive application, as it could fundamentally improve our understanding of how these small biological systems function,”
“And a deeper understanding of these biological systems may lead to new treatments, so we’re looking forward to seeing what future applications emerge.” Dr Basiri-Esfahani said.

Professor Warwick Bowen, from UQ’s Precision Sensing Initiative and the Australian Centre for Engineered Quantum Systems said that the leap forward may usher in a host of exciting new technologies.
“This is a major step forward, since accurate ultrasound measurement is critical for a range of applications,” he said.
“Ultrasound is currently used for medical ultrasound, commonly to examine pregnant women, as well as for high resolution biomedical imaging to detect tumours and other anomalies.
“It’s also commonly used for spatial applications, like in the sonar imaging of underwater objects or in the navigation of unmanned aerial vehicles.
“Improving these applications requires smaller higher precision sensors, and with this new technique, that’s exactly what we’ve been able to develop.”

The new ultrasound-sensing technology, for the first time, reaches the regime where its noise is dominated by the random miniscule forces from surrounding air molecules.
“We’ve developed a near perfect ultrasound detector, hitting the limits of what the technology is actually capable of achieving,” Professor Bowen said.
“We’re now able to measure ultrasound waves that apply tiny forces – comparable to the gravitational force on a virus – and we can do this with sensors smaller than a millimetre across.”

###

The research was supported by the Australian Research Council, the European Union’s Horizon 2020 research and innovation programme (Marie Sk?odowska-Curie Actions COFUND), the Welsh Government through the European Regional Development Fund (Sêr Cymru Programme), and the United States Air Force Office of Scientific Research.

Media Contact
Delyth Purchase
[email protected]
01-792-513-022

Original Source

https://www.swansea.ac.uk/press-office/latest-research/ultraultrasoundtotransformnewtech.php

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-08038-4

Tags: BiotechnologyChemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.