• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

UIC researchers find hidden proteins in bacteria

Bioengineer by Bioengineer
March 20, 2019
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Science overturns longstanding assumption

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene — known as a translation start site or a start codon — in bacterial cell DNA with a single experiment and, through this method, they have shown that an individual gene is capable of coding for more than one protein.

Historically, the generally taught scientific premise has been that each gene has one unique start site and is responsible for the creation of only one protein. However, the study, which is published in Molecular Cell, a leading journal on the topic of cellular processes, shows that some genes have more than one start site and can specify production of more than one functional protein.

Their method of identifying gene start sites relies on a common prescription drug called retapamulin, a topical antibiotic. Retapamulin, they showed for the first time, works by causing the ribosome, which reads genetic code, to become stalled at these start sites, inhibiting translation, a key part of the process by which the genetic code in DNA is used to create proteins.

UIC’s Alexander Mankin and Nora Vázquez-Laslop led the research, which looked at E. coli cells in response to retapamulin in in vitro and in vivo experiments.

“First, we understood the antibiotic’s mechanism and then we applied that knowledge to identify the special ‘start’ gene signals the cell uses to regulate protein synthesis,” said Mankin, the Alexander Neyfahk Professor of Medicinal Chemistry and Pharmacognosy at the UIC College of Pharmacy. “In the past, these start codons were identified by rather difficult processes — proteins often needed to be isolated and studied to discover where the start sites of their genes are located in the bacterial genome. Now, in a single experiment, we can profile the starts of all the thousands of bacterial genes in a more forward manner.”

Mankin and Vázquez-Laslop say using retapamulin to aid in bacterial gene translation profiling opens many new avenues for research.

Using the antibiotic, the researchers from Mankin and Vázquez-Laslop’s lab, which included Sezen Meydan, James Marks, Dorota Klepacki and Amira Kefi, were able to identify “cryptic,” or alternative start sites within some bacterial genes.

“We saw that many previously hidden proteins were initiated at sites in the middle of the gene and that those proteins were functional and that initiation at alternative start sites is widespread in bacteria,” said Vázquez-Laslop, research professor of medicinal chemistry and pharmacognosy at the UIC College of Pharmacy and the Center for Biomolecular Sciences.

The researchers found more than 100 E. coli genes, out of around 4,000, that could initiate protein synthesis at more than one site.

“Proteins initiated at these unknown sites may constitute a previously hidden fraction of the proteome — the entire set of proteins that can be expressed — in bacteria and their initiation at these sites may play a role in the life of the cell,” said Mankin, who is also director of the Center for Biomolecular Science. “By better understanding the cell and the mechanisms of antibiotic action, we can apply that knowledge to learn more about what makes bacteria become pathogenic.”

“We can also apply that knowledge to better understand how to prevent or stop bacteria from causing harm,” Vázquez-Laslop said.

###

Additional co-authors on this research, which was supported by the National Science Foundation (MCB1615851), include T?nu Margus of Umeå University in Umeå, Sweden; Virag Sharma of Technische Universitat Dresden in Dresden, Germany; Pavel Baranov of University College Cork in Cork, Ireland; and Andrew Firth of the University of Cambridge in Cambridge, United Kingdom.

Media Contact
Jackie Carey
[email protected]

Related Journal Article

https://today.uic.edu/uic-researchers-find-hidden-proteins-in-bacteria
http://dx.doi.org/10.1016/j.molcel.2019.02.017

Tags: BiologyCell BiologyInfectious/Emerging DiseasesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    137 shares
    Share 55 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cachexia Index Predicts Gastric Cancer Impact

Non-Coding Lung Cancer Genes Found in 13,722 Chinese

Unraveling Mitophagy in Bronchopulmonary Dysplasia

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.