• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UCLA researchers create armored emulsions as tiny test tubes for parallel reactions

Bioengineer by Bioengineer
November 13, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Advance shows path for ‘lab-on-a-particle’ technologies to democratize scientific research and health diagnostics

IMAGE

Credit: Di Carlo Research Group/UCLA

If you have ever shaken a salad dressing bottle mixed with oil and vinegar, you have temporarily created an emulsion. However, that state is temporary, and the two components soon separate. But, what if you could create a stable emulsion in which all of the tiny droplets stay at a uniform size for a long time? UCLA bioengineers and mathematicians have done just that, inventing the first-ever “armored” emulsions.

The armor comes in the form of tiny soft U-shaped cups, about a half-millimeter in length. With a hydrophobic (water-repelling) exterior and hydrophilic (water-attracting) interior, each U-shaped particle captures a fluid droplet resulting in an emulsion that stays intact following mixing. The technology opens up new avenues in pharmaceutical and chemical production, biological research and diagnostics.

A study detailing the research was recently published in Science Advances.

“They’re like tiny test tubes, but thousands of times smaller than the ones currently used in laboratories,” said study leader Dino Di Carlo, a bioengineering professor at UCLA Samueli School of Engineering and UCLA’s Armond and Elena Hairapetian Professor of Engineering and Medicine.

“Unlike traditional test tubes, these ones automatically fill up to hold a volume of fluid about the size of a single cell. And as they’re uniform in size, they are ideal to carry out repeatable chemical reactions. This is a fundamental requirement in biological research and health diagnostics.”

In collaboration with Andrea Bertozzi, a distinguished professor of mathematics at UCLA and the Betsy Wood Knapp Professor for Innovation and Creativity, the team first created mathematical models describing how the geometry and surface properties of each cup interact with fluids to hold uniform volumes. The U-shaped cups are manufactured using a new microscale 3D-printing approach previously developed by Di Carlo’s research group.

“This is one of the most interesting applications of minimal surfaces in geometry that I have seen in a long time,” said Bertozzi, whose team used a numerical method first applied to simulate 3D volume tilings to study the optimal volume configurations for the particles.

The particles allow chemical reactions to occur on many individual cells simultaneously. Cells can be kept alive inside the emulsion and identified for a desired characteristic, such as a high production of enzymes or antibodies, or resistance to a drug. Because of the tiny entrapped liquid volumes, the products of reactions from small numbers of cells or molecules can accumulate to high levels within hours instead of days. These capabilities can be important for speeding up the discovery of new drugs and expediting health diagnostics, such as for bacterial infections or cardiovascular diseases.

In addition to imparting long-term stability on the emulsion, the U-shaped particles could introduce a range of other physical and biochemical properties. The surface chemistry of the particles can be modified to capture specific target markers of disease. In addition, the shape of the particles provides a unique method of identifying each reaction, similar to a barcoded number written on the side of a test tube. Another recent paper by the group, which was published in Lab on a Chip, expands on the number of possible particle shapes.

“We think this new ‘lab-on-a-particle’ approach shows promise to leapfrog previous ‘lab-on-a-chip’ systems by eliminating the need for complex pumping and control systems,” Di Carlo said. “Making and using the armored emulsions are both quite easy with commonplace laboratory equipment like pipettes and centrifuges. This could allow more research labs around the world to conduct impactful research without significant investment on equipment.”

###

Other authors of the study include lead author Chueh-Yu Wu, Joseph de Rutte, Mengxing Ouyang and Alexis Joo, all from UCLA bioengineering and members of Di Carlo’s research group; and Bao Wang, Matthew Jacobs and Kyung Ha of UCLA mathematics, all members of Bertozzi’s research group.

Di Carlo and Bertozzi both hold faculty appointments in mechanical and aerospace engineering, and are members of the California NanoSystems Institute. Di Carlo is a member of the Jonsson Comprehensive Cancer Center.

The research was supported by a grant from National Institutes of Health and a Simons Foundation Math+X Investigator Award.

Media Contact
Christine Wei-li Lee
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abb9023

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyDiagnosticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

UCLA and UC Santa Barbara’s BioPACIFIC MIP Secures Renewed NSF Funding to Propel AI-Driven Biobased Materials Innovation

UCLA and UC Santa Barbara’s BioPACIFIC MIP Secures Renewed NSF Funding to Propel AI-Driven Biobased Materials Innovation

August 20, 2025
blank

Building and Converting Iron-Sulfur Clusters Stepwise

August 20, 2025

Scientists Develop More Efficient, Cost-Effective Magnets

August 20, 2025

Here’s a rewritten version of the headline for your science magazine post: “Cascading Water Creates Stunning Fluted Patterns”

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Why Mental Health Guidance Can Increase Your To-Do List

Pilot Study Unveils How Music Therapy Eases Pain Following Pancreatic Surgery

UCLA and UC Santa Barbara’s BioPACIFIC MIP Secures Renewed NSF Funding to Propel AI-Driven Biobased Materials Innovation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.