• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UC-led research looks at alternative to treat eye diseases

Bioengineer by Bioengineer
March 16, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Federally funded study says drug delivery for certain common eye diseases could be improved

IMAGE

Credit: University of Cincinnati

Getting poked in the eye with a sharp object is a cringeworthy thought. However, many patients with posterior eye diseases — back of the eye diseases such as macular degeneration or diabetic retinopathy — undergo eye injections through the wall of the eye as a medical treatment on a regular basis.

“Direct injections of medications into the eye are not only an unpleasant experience but repeated injections can lead to severe adverse effects to the eye, which can be sight-threatening,” says Kevin Li, a University of Cincinnati pharmaceutical scientist who is leading a new research study of an alternative treatment for posterior eye diseases.

Li and colleagues in UC’s Department of Chemistry and Department of Ophthalmology, in collaboration with researchers at Cincinnati Children’s Hospital Medical Center and the Ohio State University, recently received a four-year, $1.6 million grant from the National Institutes of Health/National Eye Institute to develop a drug delivery system that is more efficient and longer lasting than conventional eye injections.

The researchers are working to develop an ocular drug delivery system based on RNA nanotechnology to deliver therapeutics into the eye that do not require an eye puncture but are instead injected under one of the layers called conjunctiva around the eye. This method will create a reservoir for the medications to treat the disease over time.

RNA is a messenger that carries genetic information to the cell machinery responsible for protein synthesis. RNA-based technology has been increasingly used for the development of therapeutics and vaccines. Success of this strategy also requires the development of improved analytical methodology for effective monitoring of the drug status.

“It will be a great benefit to the public if an effective drug delivery system can replace repeated intravitreal injections and allow effective nucleotide-based drug delivery for the treatments of these diseases,” says Li, a professor in UC’s James L. Winkle College of Pharmacy.

According to the National Eye Institute, posterior eye diseases such as macular degeneration and diabetic retinopathy affect millions of people in the United States each year.

“This technique would likely find an application in children as well, as they would have difficulty cooperating with a direct injection while awake, and it is desirable to avoid frequent anesthesias for repeated injections,” says Michael Yang, an ophthalmologist at Cincinnati Children’s.

Currently, the only effective treatments for these eye diseases are direct eye injections of medications. The injections, in addition to the unpleasant experience and adverse effects, Li says, “are also time-consuming and increase health care costs because the treatment must be delivered by a specialist, who is doing a minor surgery.” Therefore, he says, a more effective method of drug delivery and therapy is advantageous in the treatments of these sight-threatening diseases.

###

Collaborators include UC researchers Balasubrahmanyam Addepalli, PhD, Department of Chemistry, and Winston Kao, PhD, Department of Ophthalmology; Michael Yang, MD, Cincinnati Children’s Hospital Medical Center; and Peixuan Guo, PhD, College of Pharmacy at the Ohio State University.

Media Contact
Angela Koenig
[email protected]

Original Source

https://www.uc.edu/news/articles/2021/03/nih-reseracher-on-an-alternative-to-eye-injections-for-certain-eye-diseases-is-being-led-by-uc.html

Tags: AgingCell BiologyDiabetesMedicine/HealthNanotechnology/MicromachinesOphthalmologyPediatricsPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Print Education’s Impact on Diabetes Self-Care

November 18, 2025

Comparing Pain Levels: Manual vs. Automatic Lancets

November 18, 2025

Exploring Carbon Disulfide: Chemistry and Reaction Pathways

November 18, 2025

Predicting Parkinson’s Mild Cognitive Impairment via Multimodal Data

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Salinity Tolerance in Groundnut Through Genetic Analysis

Evaluating Print Education’s Impact on Diabetes Self-Care

Genetic Variants Linked to Single-Parity Loss in Pigs

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.