• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UA receives $1.2 million NIH grant to use AI to restore movement in paralyzed limbs

Bioengineer by Bioengineer
December 6, 2018
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UA College of Medicine – Tucson


Scientists now know that the brain controls movement in people by signaling groups of neurons to tell the muscles when and where to move. Researchers also have learned it takes a complex orchestration of many signals to produce even seemingly simple body movements.

If any of these signals are blocked or broken, such as from a spinal cord injury or stroke, the messages from the brain to the muscles are unable to connect, causing paralysis. The person’s muscles are functional, but they no longer are being sent instructions.

Andrew Fuglevand, PhD, professor of physiology and neuroscience at the University of Arizona College of Medicine – Tucson, has received a $1.2 million grant from the National Institutes of Health to study electrical stimulation of the muscles as a way to restore limb movements in paralyzed individuals. Dr. Fuglevand’s goal is to restore voluntary movement to a person’s own limbs rather than relying on external mechanical or robotic devices.

Producing a wide range of movements in paralyzed limbs has been unsuccessful so far because of the substantial challenges associated with identifying the patterns of muscle stimulation needed to elicit specified movements, Dr. Fuglevand explained.

“Moving a finger involves as many as 20 different muscles at a time. Moving an arm can involve more than 50 different muscles. They all work together in an intricate ‘dance’ to produce beautifully smooth movements. Replicating how the brain naturally coordinates the activities of these muscles is extremely challenging,” he said.

This is where recent advances in “machine learning,” or artificial intelligence (AI), is making the impossible become possible. Dr. Fuglevand, who also is an affiliate professor of biomedical engineering and teaches neuroscience courses at the UA, is employing machine learning to mimic and replicate the patterns of brain activity that control groups of muscles. Tiny electrodes implanted in the muscles replay the artificially generated signals to produce complex movements.

“If successful, this approach would greatly expand the repertoire of motor behaviors available to paralyzed individuals,” he said.

“More than 5 million Americans are living with some form of paralysis, and the leading causes are stroke and spinal injury,” said Nicholas Delamere, PhD, head of the UA Department of Physiology. “New innovations in artificial intelligence, developed by scientists like Dr. Fuglevand and his team, are allowing them to decode subtle brain signals and make brain-machine interfaces that ultimately will help people move their limbs again.”

“The headway researchers have made in our understanding of artificial intelligence, machine learning and the brain is incredible,” said UA President Robert C. Robbins, MD. “The opportunity to incorporate AI to brain-limb communication has life-changing potential, and while there are many challenges to optimize these interventions, we are really committed to making this step forward. I am incredibly excited to track Dr. Fuglevand’s progress with this new grant.”

###

Video highlights how electrical stimulation can restore movement to paralyzed limbs: https://youtu.be/PzeyoRIcSJ0

Research reported in this release was supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke, under grant No. 1R01NS102259-01A1. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About the UA College of Medicine – Tucson

The University of Arizona College of Medicine – Tucson is shaping the future of medicine through state-of-the-art medical education programs, groundbreaking research and advancements in patient care in Arizona and beyond. Founded in 1967, the college boasts more than 50 years of innovation, ranking among the top medical schools in the nation for research and primary care. Through the university’s partnership with Banner Health, one of the largest nonprofit health-care systems in the country, the college is leading the way in academic medicine. For more information, please visit medicine.arizona.edu.

Media Contact
Jo Marie Barkley
[email protected]
520-260-6688

Original Source

https://uahs.arizona.edu/news/reconnecting-disconnected-ua-physiology-professor-receives-12m-nih-grant-use-ai-restore

News source: https://scienmag.com/

Tags: BioinformaticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Life Kinetic Training Enhances Balance in Children

November 24, 2025

Mapping Mouse Brain Through Dendritic Microenvironments

November 24, 2025

MAPK Fuels Colorectal Cancer Therapy Resistance

November 24, 2025

Compact Ultrasound System Captures Bone Surface Details

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    98 shares
    Share 39 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Life Kinetic Training Enhances Balance in Children

Mapping Mouse Brain Through Dendritic Microenvironments

Simple Neural Model Unveils Nutrient Response Dynamics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.