• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Type 1 Diabetes: New starting point to delay autoimmune response

Bioengineer by Bioengineer
December 19, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Carolin Daniel, Helmholtz Zentrum München


Regulatory T cells (Tregs)* prevent excessive immune reactions in healthy people. In the development of autoimmune type 1 diabetes, this protection is not sufficiently effective. Researchers at Helmholtz Zentrum München and LMU Munich have now deciphered a mechanism that impairs Treg differentiation and stability. In the study, when they inhibited the molecule that triggers this mechanism, an increased number of functional Tregs were formed again and autoimmune activation was reduced. This may represent a new molecular target to delay or even prevent the development of type 1 diabetes. The study was carried out within the framework of the German Center for Diabetes Research (DZD), and the results have now been published in Nature Communications.

Type 1 diabetes is the most common metabolic disease in children and adolescents. In this autoimmune disease, the body’s own immune cells gradually destroy the insulin-producing beta cells in the pancreas. Normally, regulatory T cells (Tregs) prevent an attack on the body’s own cells. However, during the development of type 1 diabetes, this protection is insufficient. The team led by Professor Carolin Daniel is investigating why this is the case. She is research group leader at the Institute of Diabetes Research (IDF) at Helmholtz Zentrum München, scientist in the DZD and professor for immune modulation at Ludwig- Maximilians-Universität in Munich. The researchers have now deciphered a molecular mechanism that during an early phase of type 1 diabetes leads to the formation of decreased numbers of functional Tregs.

Elevated levels of miRNA142-3p contribute to the development and progression of autoimmunity

The microRNA miRNA142-3p plays a decisive role in this process. MicroRNAs can suppress the expression of individual genes. “During the development of autoimmunity in type 1 diabetes, we were able to detect an increased abundance of miRNA142-3p. This leads to a reduced expression of the protein Tet2 in T-helper cells,” said first author Martin Scherm. As a consequence, faulty epigenetic changes occur in the Foxp3 gene of the regulatory T cells. A decreased number of these important immune cells are formed, and the Tregs are no longer as stable. “Our research results show a direct link between miRNA142-3p and the impaired function of regulatory T cells, which subsequently contributes to the development and progression of autoimmunity,” said last author Carolin Daniel, summarizing the results of the this study.

New target for future intervention strategies

In order to investigate whether the findings could also open up new therapeutic approaches in the future, the scientists specifically blocked the miRNA142-3p molecule. This improved the formation and stability of the regulatory T cells. In the animal model, the autoimmune response to the insulin-producing beta cells also decreased.

“The detailed investigation of the underlying mechanisms led to the identification of promising targets for future intervention strategies. The targeted inhibition of miRNA142-3p could open up new ways to reduce the activity of the immune system against its own insulin-producing cells,” said Professor Anette Ziegler, head of the IDF.

The researchers have plans for follow-up studies: In order to further investigate the potential of the targeted inhibition of specific miRNAs, the next step will be to improve the selective and targeted accumulation of the miRNA142-3p inhibitor in the relevant target cells. The researchers are already making plans: In addition, Carolin Daniel’s team also wants to identify further genes that are regulated by miRNA142-3p and/or Tet2 and whose dysregulation can contribute to the development and progression of islet autoimmunity.

###

*Regulatory T cells (Tregs), are a specialized subgroup of T cells. They suppress the activation of the immune system in certain situations. Thus, they prevent the development of autoimmune diseases and allergies in the healthy organism.

Original publication:

Scherm, M. G. et al. (2019): miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes. Nature Communications, DOI: 10.1038/s41467-019-13587-3

Scientific contact:

Prof. Dr. Carolin Daniel

Helmholtz Zentrum München, German Research Center for Health and Environment

Institute for Diabetes Research

Heidemannstr. 1

D-80939 Munich

E-Mail: carolin.daniel(at)helmholtz-muenchen.de

Media Contact
Birgit Niesing
[email protected]
0049-893-187-3871

Original Source

https://www.dzd-ev.de/en/press/press-releases/press-releases-2019/type-1-diabetes-researchers-identify-new-molecular-target-to-prevent-progression-of-islet-autoimmunity/index.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-13587-3

Tags: BiologyCell BiologyDiabetesMedicine/HealthMetabolism/Metabolic Diseases
Share13Tweet8Share2ShareShareShare2

Related Posts

Youth Internet Addiction in Eastern Mediterranean: Social Anxiety’s Role

Youth Internet Addiction in Eastern Mediterranean: Social Anxiety’s Role

August 5, 2025
Smartphone Bans in Schools Lack Scientific Evidence

Smartphone Bans in Schools Lack Scientific Evidence

August 5, 2025

Over 150 Hospitals Nationwide Honored for Excellence in Comprehensive Cardiovascular Care

August 5, 2025

Pregnancy Risks from Chikungunya, Dengue, Zika in Brazil

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Safety Evaluation of Probiotic Pediococcus acidilactici Strains

Youth Internet Addiction in Eastern Mediterranean: Social Anxiety’s Role

Carvedilol Boosts Paclitaxel Effect in Resistant Gastric Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.