• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Type 1 diabetes may have an impact on the developing brain in children

Bioengineer by Bioengineer
June 10, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nemours researchers part of the Diabetes Research in Children Network present pivotal research at American Diabetes Association Scientific Sessions

SAN FRANCISCO (June 10, 2019) – A study co-led by Dr. Nelly Mauras at Nemours Children’s Health System in Jacksonville, Florida found that children with type 1 diabetes (T1D) have slower growth in brain areas associated with mild cognitive deficits compared to children without T1D. The study, presented today at the American Diabetes Association’sĀ® (ADA’s) 79th Scientific SessionsĀ®, found significant differences in total brain and regional gray and white matter growth based on a series of three structural magnetic resonance imaging (MRI) studies.

“Even with new insulin and technologies that can significantly improve care, children with Type 1 Diabetes are still exposed to significant swings in sugar control, creating potential risks to the developing brain,” said Nelly Mauras, MD, co-principal investigator of the study, chief of the division of endocrinology, diabetes & metabolism at the Nemours Children’s Health System in Jacksonville, Florida, and professor of pediatrics at the Mayo College of Medicine. “Understanding the early effects of blood sugar control on brain development is a necessary step towards developing strategies for reducing these risks and the public health implications of diabetes-related cognitive dysfunction later on in life.”

As part of a multi-site study of the Diabetes Research in Children Network (DirecNet), researchers aimed to determine the extent to which glycemic exposure adversely impacts the developing brain in children with early-onset T1D. The study enrolled 138 children with T1D with a median age of seven years. The participants had a disease duration on average of 2.4 years at the beginning of the study. MRIs were performed at three time points (baseline visit, 18 months and approximately 2.9 years after the second visit) to measure gray and white matter volumes in key brain regions. Total cumulative hyperglycemic exposure was determined using lifetime blood sugar, using hemoglobin A1c (HbA1c) values from the time of diagnosis. Researchers compared the MRI results of T1D participants to those of a control group of 66 age-matched children who did not have diabetes.

Researchers found that the group with T1D had slower growth of total cortical and subcortical gray and white matter than the control group at all time points. In particular, a set of metabolically active brain regions associated with other brain disorders, known as the “default mode network,” showed less growth in the T1D group compared to the control group. These regions of slower growth were associated with higher lifetime blood sugar, as measured by HbA1c values.

“Ongoing research is investigating whether diligent maintenance of blood sugar levels in the normal range through advanced diabetes technologies can impact these findings to reduce the risk for cognitive dysfunction,” said Mauras.

###

The DirecNet includes Nemours Children’s Health System JAX, Stanford University, University of Iowa, Washington University in St Louis, and Yale University. The research is supported through funding from the National Institutes of Health’s Special Type 1 Diabetes Funds and the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Dr. Mauras and her co-principal investigator, Allan Reiss, MD, Howard C. Robbins Professor of Psychiatry and Behavioral Sciences and Professor of Radiology at Stanford University School of Medicine, will present these findings in a press briefing on Sunday, June 9, 2019 from 12-1 p.m. PT at the American Diabetes Association’s 79th Scientific Sessions in San Francisco.

About Nemours Children’s Health System

Nemours is an internationally recognized children’s health system that owns and two free-standing children’s hospitals: the Nemours/Alfred I. duPont Hospital for Children in Wilmington, Del., and Nemours Children’s Hospital in Orlando, Fla., along with outpatient facilities in five states, delivering pediatric primary, specialty and urgent care. Nemours also powers the world’s most-visited website for information on the health of children and teens, KidsHealth.org, and offers on-demand, online video patient visits through Nemours CareConnect. Nemours ReadingBrightstart.org is a program dedicated to preventing reading failure in young children, grounded in Nemours’ understanding that child health and learning are inextricably linked, and that reading level is a strong predictor of adult health.

Established as The Nemours Foundation through the legacy and philanthropy of Alfred I. duPont, Nemours provides pediatric clinical care, research, education, advocacy and prevention programs to families in the communities it serves.

Media Contact
Stephanie Wight
[email protected]

Tags: DiabetesMedicine/HealthPediatrics
Share12Tweet8Share2ShareShareShare2

Related Posts

BU Researchers Receive $2.1 Million Grant to Advance Training in Biomolecular Pharmacology

BU Researchers Receive $2.1 Million Grant to Advance Training in Biomolecular Pharmacology

August 12, 2025
blank

Combo Therapy Outperforms SGLT2 Alone in MASLD

August 12, 2025

Remote Real-Time Monitoring Revolutionizes Parkinson’s Care

August 12, 2025

Exercise May Decelerate Epigenetic Aging, New Study Finds

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cancer Cells Evade Anti-Cancer Drugs by Hiding and Thriving Within Bone Marrow Fibroblasts

Revolutionary Research Unveils ā€œPore Science and Engineeringā€ Paving the Way for Next-Generation Porous Materials

KAIST Unveils Revolutionary Wireless OLED Contact Lens for Retinal Diagnostics

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.