• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

'Twilight Zone' could help preserve shallow water reefs

Bioengineer by Bioengineer
February 6, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The University of Queensland

Corals lurking in deeper, darker waters could one day help to replenish shallow water reefs under threat from ocean warming and bleaching events, according to researchers.

The University of Queensland and the ARC Centre of Excellence for Coral Reef Studies examined corals from the ocean’s ‘twilight zone’ at depths below 30 metres.

Dr Gal Eyal, the Marie Skłodowska-Curie fellow at UQ’s Marine Palaeoecology Lab, said the mesophotic zone is deeper than recreational SCUBA diving limitations.

“Corals in this zone are often overlooked or ignored but occupy at least 50 per cent of unique coral habitats,” Dr Eyal said.

“Light is limited when descending to these depths, so it’s a major factor in the livelihood of the ecosystems there.

“We showed that strictly mesophotic coral can grow much faster when it is transplanted to a shallow reef light environment.

“In deeper waters the corals experience light limitations, so they allocate their energy accordingly.”

Dr Eyal said the improved performance of the corals collected from 40 to 50m depth and placed in shallow water conditions was promising, but more research was needed to better understand the physiological processes controlling the phenomena.

“This study shows that while there are restrictions in nature currently preventing the persistence of these corals in shallow reefs, the potential is there.”

“The ‘twilight-zone’ needs to be considered an important zone of coral reefs, instead of the marginal environment it is often viewed as today.”

Dr Eyal said the deep could reveal many more secrets that could help researchers understand coral reefs.

“Coral reefs are diminishing worldwide due to global warming, so we strongly advocate for the protection and conservation of these deeper and unique environments in order to secure a future for coral reefs.”

###

The research is published in Royal Society Open Science (DOI: 10.1098/rsos.180527).

Images and video are available via Dropbox: https://www.dropbox.com/sh/tmkekrccrbhf28n/AACFyxZ0bxqm7_-4fkR39IBoa?dl=0

Media Contact
Dr Gal Eyal
[email protected]
61-434-090-490

Original Source

https://www.uq.edu.au/news/article/2019/02/twilight-zone%E2%80%99-could-help-preserve-shallow-water-reefs

Related Journal Article

http://dx.doi.org/10.1098/rsos.180527

Tags: BiologyEarth ScienceFisheries/AquacultureMarine/Freshwater BiologyOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

AAAS Expands Science Partner Journal Program with Launch of Cancer Communications

AAAS Expands Science Partner Journal Program with Launch of Cancer Communications

October 28, 2025
blank

Z-GENIE: Easy Tool for Predicting Z-DNA Regions

October 28, 2025

Exploring Taar Expression in Mandarin Fish Response

October 28, 2025

Uncovering Hidden Carbon Dioxide Absorption: Russian Scientists Reveal Plant Roots’ Secret Role

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Nurses’ Seizure Management Through Flipped Learning

Amlodipine Targets Glioma Stem Cells by Degrading EGFR

Smart Hydrogel Boosts Diabetic Foot Regeneration Mechanisms

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.