• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Twice as much carbon flowing from land to ocean than previously thought

Bioengineer by Bioengineer
March 18, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Eun Young Kwon

Every year 600-900 million tons of carbon flow through rivers to the ocean either as particles or in dissolved form. Researchers have known for a long time that this does not represent the total amount of carbon that gets transported from the land to the ocean. But the remaining contributors mostly from coastal ecosystems, such as carbon-rich mangrove forests, and from groundwater discharge into the ocean have been notoriously difficult to measure.

A new study published in the journal Global Biogeochemical Cycles and spearheaded by Dr. Eun Young Kwon, project leader at the IBS Center for Climate Physics South Korea provides new estimates of this elusive component of the global carbon cycle. The study makes use of the existence of two stable carbon isotopes, 12C and 13C, with the latter being slightly heavier, because it has one more neutron in its nucleus. The concentration ratio between these two carbon isotopes (referred to as ?13C) provides a means to track carbon through the different components of the carbon cycle, including the atmosphere, oceans, river systems and the biosphere. Knowing the typical ?13C value of land biosphere and for coastal vegetation, one can now track how this quantity gets diluted in the oceans. “The carbon isotope values act like an invisible dye that tells us something about the source where it came from and how much got released initially” says Dr. Kwon, lead author of the study.

By using oceanic observations of ?13C and estimates of the ocean currents, Dr. Kwon and her international team were able to calculate how much carbon would have to come from the land to explain the ocean data. The calculations are a bit more complicated because carbon can also get deposited in the deep ocean as sediment or outgas to the atmosphere. Furthermore, fossil fuel burning also changes the ?13C of atmospheric and eventually oceanic carbon.

After accounting for these effects, the authors were up for a surprise: they found much higher numbers for the land to ocean carbon transfer of 900-1900 million tons per year (see Figure). Most of non-riverine carbon inputs of about 300-1300 million tons of carbon per year occur mostly along the coastlines of the Indian and Pacific Oceans. “This is consistent with the idea that groundwater discharge and coastal ecosystems, the so-called blue carbon, play a fundamental role in the global carbon cycle” says Dr. Kwon.

One of the remaining open questions is which oceanic processes are responsible for carrying the dissolved carbon from the coastal zones to the open ocean, where part of it outgases back to the atmosphere. “This question will be addressed in future with a series of new earth system model simulations that we just conducted on our supercomputer Aleph”, says Axel Timmermann, co-author of the study and Director of the IBS Center for Climate Physics.

###

Media Contact
William I. Suh

[email protected]

Related Journal Article

http://dx.doi.org/10.1029/2020GB006684

Tags: Climate ChangeClimate ScienceEarth ScienceEcology/EnvironmentGeology/SoilHydrology/Water ResourcesOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

GBLUP vs. WGBLUP: Genomic Selection in Beef Cattle

December 21, 2025
blank

Anopheles gambiae Habitat and Public Health in Osun

December 21, 2025

Genetic Insights into Aedes aegypti Expansion in California

December 21, 2025

Autophagy and HSP70 Drive Mytilus Thermal Stress Adaptation

December 20, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Staphylococcus Fatty Acids Control Joint Infection Aggregation

Unlocking Genetic Links Between Obesity and Autoimmunity

Healthcare-Seeking Behavior and Inequality in Fujian’s Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.