• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

‘Tweezer clock’ may help tell time more precisely

Bioengineer by Bioengineer
December 23, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Caltech


Atomic clocks are used around the world to precisely tell time. Each “tick” of the clock depends on atomic vibrations and their effects on surrounding electromagnetic fields. Standard atomic clocks in use today, based on the atom cesium, tell time by “counting” radio frequencies. These clocks can measure time to a precision of one second per every hundreds of millions of years. Newer atomic clocks that measure optical frequencies of light are even more precise, and may eventually replace the radio-based ones.

Now, researchers at Caltech and the Jet Propulsion Laboratory (JPL), which is managed by Caltech for NASA, have come up with a new design for an optical atomic clock that holds promise to be the most accurate and precise yet (accuracy refers to the ability of the clock to correctly pin down the time, and precision refers to its ability to tell time in fine detail). Nicknamed the “tweezer clock,” it employs technology in which so-called laser tweezers are used to manipulate individual atoms.

“One of the goals of physicists is to be able to tell time as precisely as possible,” says Manuel Endres, an assistant professor of physics at Caltech who led a new paper describing the results in the journal Physical Review X. Endres explains that while the ultra-precise clocks may not be needed for everyday purposes of counting time, they could lead to advances in fundamental physics research as well as new technologies that are yet to be imagined.

The new clock design builds upon two types of optical atomic clocks already in use. The first type is based on a single trapped charged atom, or ion, while the second uses thousands of neutral atoms trapped in what is called an optical lattice. In the trapped-ion approach, only one atom (the ion) needs to be precisely isolated and controlled, and this improves the accuracy of the clock. On the other hand, the optical lattice approach benefits from having multiple atoms–with more atoms there are fewer uncertainties that arise due to random quantum fluctuations of individual atoms.

The atomic clock design from Endres’ group essentially combines the advantages of the two designs, reaping the benefits of both. Instead of using a collection of many atoms, as is the case with the optical lattice approach, the new design uses 40 atoms–and those atoms are precisely controlled with laser tweezers. In this regard, the new design benefits not only from having multiple atoms but also by allowing researchers to control those atoms.

“This approach bridges two branches of physics–single-atom control techniques and precision measurement,” says Ivaylo Madjarov, a Caltech graduate student and lead author of the new study. “We’re pioneering a new platform for atomic clocks.”

Madjarov explains that, in general, the atoms in atomic clocks act like tuning forks to help stabilize the electromagnetic frequencies, or laser light. “The oscillations of our laser light act as a pendulum that counts the passage of time. The atoms are a very reliable reference that makes sure that pendulum swings at a constant rate.”

The team says that the new system is ideally suited for future research into quantum technologies. The atoms in these systems can become entangled, or globally connected, and this entangled state can further stabilize the clock. “Our approach can also build a bridge to quantum computation and communication architectures,” says Endres. “By merging different techniques in physics, we’ve entered a new frontier.”

###

The Physical Review X paper, titled, “An Atomic Array Optical Clock with Single-Atom Readout,” is funded by the National Science Foundation and the Air Force Office of Scientific Research. Other authors include: Alexandre Cooper-Roy, formerly of Caltech and now at the University of Waterloo; Adam Shaw, Jacob Covey, and Tai Hyun Yoon of Caltech; and Vladimir Schkolnik, and Jason Williams of JPL.

Media Contact
Whitney Clavin
[email protected]
626-395-1944

Original Source

https://www.caltech.edu/about/news/tweezer-clock-may-help-tell-time-more-precisely

Related Journal Article

http://dx.doi.org/10.1103/PhysRevX.9.041052

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Aligning Language Models with Human Brain Processing

October 2, 2025
MoS2 Nanosheets Enhance Capacitive Deionization Water Purification

MoS2 Nanosheets Enhance Capacitive Deionization Water Purification

October 2, 2025

Social Risk Factors Linked to Diabetes Prevalence

October 2, 2025

Miniature CRISPR–Cas10 Grants Immunity via Inhibition

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    71 shares
    Share 28 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Aligning Language Models with Human Brain Processing

MoS2 Nanosheets Enhance Capacitive Deionization Water Purification

Social Risk Factors Linked to Diabetes Prevalence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.