• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Turning the heat down: Catalyzing ammonia formation at lower temperatures with ruthenium

Bioengineer by Bioengineer
December 23, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tokyo Tech

Nitrogen is an essential nutrient for plant growth. While about 80% of earth is nitrogen, it is mostly contained in the atmosphere as gas, and hence, inaccessible to plants. To boost plant growth, especially in agricultural settings, therefore, chemical nitrogen fertilizers are needed. A crucial step in the production of these fertilizers is the synthesis of ammonia, which involves a reaction between hydrogen and nitrogen in the presence of a catalyst.

Traditionally, ammonia production has been performed through the “Haber-Bosch” process, which, despite being effective, requires high temperature conditions (400-500°C), making the process expensive. Consequently, scientists have been trying to find a way to reduce the reaction temperatures of ammonia synthesis.

Recently, scientists have reported ruthenium–a transition metal–as an efficient “catalyst” for ammonia synthesis, as it operates under milder conditions than traditional iron-based catalysts. However, there is a caveat: nitrogen molecules need to stick to the catalyst surface to undergo dissociation into atoms before reacting with hydrogen to form ammonia. For ruthenium, however, the low temperature often causes hydrogen molecules to stick to its surface instead–a process called hydrogen poisoning–which impedes the production of ammonia. To work with ruthenium, therefore, it is necessary to suppress its hydrogen poisoning.

Fortunately, certain materials can boost the catalytic activity of ruthenium when used as a “catalyst support.” A team of scientists from Tokyo Tech, Japan, recently revealed that lanthanide hydride materials of the form LnH2+x is one such group of support materials. “The enhanced catalytic performance is realized by two unique properties of the support material. First, they donate electrons, which guide the dissociation of nitrogen on the ruthenium surface. Second, these electrons combine with hydrogen on the surface to form hydride ions, which readily react with nitrogen to form ammonia and release the electrons, suppressing hydrogen poisoning of ruthenium”, explains Associate Prof. Maasaki Kitano, who led the study.

Suspecting that hydride ion mobility might have a role to play in ammonia synthesis, the team, in a new study published in Advanced Energy Materials, investigated the performance of lanthanide oxyhydrides (LaH3-2xOx)–reportedly fast hydride ion conductors at 100-400°C–as a support material for ruthenium, with the aim of uncovering the relationship between ammonia synthesis and hydride ion mobility.

They found that while the “bulk” hydride ion conductivity had little bearing on the activation of ammonia synthesis, the surface or “local” mobility of hydride ions did play a crucial role in catalysis by helping to build up a strong resistance against hydrogen poisoning of ruthenium. They also found that, compared with other support materials, lanthanum oxyhydrides required a lower onset temperature for ammonia formation (160°C) and showed a higher catalytic activity.

Furthermore, the team observed that the presence of oxygen stabilized the oxyhydride framework and the hydride ions against nitridation–the transformation of lanthanum oxyhydride to lanthanum nitride and its subsequent deactivation–which tends to impede catalysis and is a major drawback in using hydride support materials. “The resistance to nitridation is a tremendous advantage as it helps to preserve the electron donating ability of the hydride ions for longer duration of the reaction,” comments Prof. Kitano.

The superior catalytic performance and lower synthesis onset temperature achieved using lanthanide oxyhydrides could thus be the much sought-after solution to turn the heat down on ammonia production!

###

Media Contact
Kazuhide Hasegawa
[email protected]

Original Source

https://www.titech.ac.jp/english/news/2020/048588.html

Related Journal Article

http://dx.doi.org/10.1002/aenm.202003723

Tags: Industrial Engineering/ChemistryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Protective Coating for Spacecraft in Development by Engineers

October 20, 2025
blank

Scientists Uncover Life’s Building Blocks in Ice Surrounding a Forming Star in Nearby Galaxy

October 20, 2025

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

October 20, 2025

The Quantum Doorway Puzzle: Electrons Struggling to Find Their Exit

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1268 shares
    Share 506 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    121 shares
    Share 48 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Upland Rice Genotypes Show Blast Resistance in Ethiopia

Exploring Racism: Perspectives to Shape Anti-Racism Curricula

Automated Segmentation Method for Infant Cries Developed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.