• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Turning a dangerous toxin into a biosensor

Bioengineer by Bioengineer
October 29, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chan Cao, EPFL


Some types of bacteria have the ability to punch holes into other cells and kill them. They do this by releasing specialized proteins called “pore-forming toxins” (PFTs) that latch onto the cell’s membrane and form a tube-like channel that goes through it. This hole (structure?) across the membrane is called a pore. Punctured by multiple PFTs, the target cell self-destructs.

However, PFTs have garnered much interest beyond bacterial infections. The nano-sized pores that they form are used for “sensing” biomolecules: a biological molecule e.g. DNA or RNA, passes through the nanopore like a string steered by a voltage, and its individual components (e.g. nucleic acids in DNA) give out distinct electrical signals that can be read out. In fact, nanopore sensing is already on the market as a major tool for DNA or RNA sequencing.

Publishing in Nature Communications, scientists led by Matteo Dal Peraro at EPFL have studied another major PFT that can be used effectively for more complex sensing, such as protein sequencing. The toxin is aerolysin, which is produced by the bacterium Aeromonas hydrophila, and is the “founding member” of a major family of PFTs found across many organisms.

One of the main advantages of aerolysin is that it forms very narrow pores that can tell apart molecules with much higher resolution than other toxins. Previous studies have shown that aerolysin can be used to “sense” several biomolecules, but there haven’t been barely any studies on the relationship between aerolysin’s structure and its molecular sensing abilities.

The researchers first used a structural model of aerolysin to study its structure with computer simulations. As a protein, aerolysin is made up of amino acids, and the model helped the scientists understand how those amino acids affect the function of aerolysin in general.

Once they had a grasp of that relationship, the researchers began to strategically change different amino acids in the computer model. The model then predicted the possible impact of each change on the overall function of aerolysin.

At the end of the computational process, Dr Chan Cao, the leading author of this work, produced sixteen genetically engineered, “mutant” aerolysin pores, embedded them in lipid bilayers to simulate their position in a cell membrane, and carried out various measurements (single-channel recording and molecular translocation experiments) to understand how ionic conductance, ion selectivity, and translocation properties of the aerolysin pore are regulated on a molecular level.

And with this approach, the researchers finally found what drives the relationship between the structure and the function of aerolysin: its cap. The aerolysin pore isn’t just a tube that goes through the membrane, but also has a cap-like structure that attracts and tethers the target molecule and “pulls” it through the pore’s channel. And the study found that the it is the electrostatics at this cap region that dictate this relationship.

“By understanding the details of how the structure of the aerolysin pore connects to its function, we can now engineer custom pores for various sensing applications,” says Dal Peraro. “These would open new, unexplored opportunities to sequence biomolecules as DNA, proteins and their post-translational modifications with promising applications in gene sequencing and biomarkers detection for diagnostics.” The scientists have already filed a patent for their sequencing and characterization of the genetically engineered aerolysin pores.

###

Other contributors

Federal University of Rio de Janeiro

Skolkovo Institute of Science and Technology (Russia)

EPFL Laboratory of Nanoscale Biology

Reference

Chan Cao, Nuria Cirauqui, Maria Jose Marcaida, Buglakova Elena, Alice Duperrex, Aleksandra Radenovic, Matteo Dal Peraro. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores. Nature Communications 29 October 2019. DOI: 10.1038/s41467-019-12690-9

Media Contact
Nik Papageorgiou
[email protected]
41-216-932-105

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12690-9

Tags: BacteriologyBiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyDiagnosticsMicrobiologyMolecular Biology
Share14Tweet9Share2ShareShareShare2

Related Posts

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

September 1, 2025

Chain Recognition Advances Head–Tail Carboboration of Alkenes

September 1, 2025

Solar Orbiter Tracks Ultrafast Electrons Back to the Sun

September 1, 2025

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailored Risk Messages Show No Impact on Increasing Colorectal Cancer Screening Rates

New Predictive Model for Postpartum Hemorrhage in Cesarean Cases

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.