• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Turn off a light, save a life, says new UW-Madison study

Bioengineer by Bioengineer
March 20, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MADISON, Wis. — We all know that turning off lights and buying energy-efficient appliances affects our financial bottom line. Now, according to a new study by University of Wisconsin-Madison researchers, we know that saving energy also saves lives and even more money for consumers by alleviating the costs of adverse health effects attributed to air pollution.

Writing this week in the journal Environmental Science & Technology, a team led by UW-Madison postdoctoral researcher David Abel tabulates both lives saved and cost benefits to consumers of improved health outcomes due to reduced energy consumption.

“By saving electricity, we can also save lives,” says Abel, of the Center for Sustainability and the Global Environment in UW-Madison’s Nelson Institute for Environmental Studies. “There is a range of health benefits. It’s a bonus. We find there are extra health reasons to turn off a light.”

Abel and his colleagues, including senior author Tracey Holloway, also of the Nelson Institute, deployed a suite of three widely used models to calculate power plant emissions, air quality and human mortality over a span of three summer months, when energy use is high. Their findings show that a 12 percent increase in summertime energy efficiency would reduce exposure to air pollution, specifically ozone and fine particulate matter. In short, cleaner air would save 475 human lives each year in the United States, worth an estimated $4 billion.

That savings translates to almost 5 cents per kilowatt hour of energy used. That is a huge incentive, the Wisconsin team notes, given that electricity costs about 10 cents per kilowatt hour on average.

“We’re trying to clarify how changes in energy systems have benefits for public health,” explains Holloway, who is also a UW-Madison professor of atmospheric and oceanic sciences. “For the most part, the energy community is not focused on the human health effects of air pollution.”

By showing the savings and how to accurately gauge the value of lives saved and associated reduced health care costs, the UW team hopes to provide policymakers and the energy industry with a road map for assessing the human health benefits of reducing energy use. Ideally, putting a price tag on positive health outcomes related to reduced energy adds a new impetus to the existing strategies used by government and the energy industry to help consumers save energy.

Air pollution such as ozone and fine particles caused by emissions from power plants adversely affect human health. They are known to contribute to an increased incidence of asthma attacks and other respiratory diseases in susceptible populations.

The project to quantify the human health benefits of saving energy, says Holloway, emerged from an undergraduate class project that found that only one state, Texas, had used energy efficiency to meet air pollution targets. Many counties across the United States fail to meet ozone and particulate standards, as required by the Environmental Protection Agency.

“This seems like a missed opportunity,” says Holloway. “Energy efficiency is free, yet it is not being included in the basket of solutions.”

An implicit goal of the new research, say Abel and Holloway, is to help build bridges between distinct sets of researchers and policymakers. In practice, people who focus on air pollution and those who focus on energy work in different worlds, the Wisconsin researchers say. Finding common threads and providing tools to integrate those different worlds will save money, improve human health, and equip government and industry to meet stated air quality goals.

###

Terry Devitt, (608) 262-8282, [email protected]

This work was funded by the George Bunn Wisconsin Distinguished Graduate Fellowship in Energy Analysis and Policy, the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison, and the University of Wisconsin-Madison’s Global Health Institute’s Graduate Award. Support was also provided by the NASA Health and Air Quality Applied Sciences Team (Grant # NNX16AQ92G), and by the Bridge to the Doctorate fellowship from the Wisconsin Louis Stokes Alliance for Minority Participation by the National Science Foundation.

Media Contact
David Abel
[email protected]
https://news.wisc.edu/turn-off-a-light-save-a-life-says-new-uw-madison-study/

Tags: Atmospheric ScienceChemistry/Physics/Materials SciencesEarth ScienceEnergy SourcesEnergy/Fuel (non-petroleum)Medicine/HealthPollution/RemediationTechnology/Engineering/Computer ScienceUrbanization
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1280 shares
    Share 511 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    189 shares
    Share 76 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TRIM35 Epigenetically Boosts HSPA6, Halting Breast Cancer

Identifying Alzheimer’s: Whole-Body Gait in Dual-Task Walking

Exploring Telemedicine’s Impact on Epilepsy Care in India

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.